Вконтакте Facebook Twitter Лента RSS

Механизм реакции вюрца. Именные реакции в органической химии Что такое реакция вюрца

. P.Фиттиг распространил реакцию Вюрца на область ароматических углеводородов

Современный подход к реакции Вюрца

Для преодоления множества побочных процессов было предложено использовать более селективные и современные методы. Основные разработки ведутся по применению не-натриевых металлов. Для проведения реакции Вюрца используют серебро , цинк , железо и пирофорный свинец . Последний реагент позволяет проводить реакцию в присутствии карбоксильной группы.

Внутримолекулярная реакция Вюрца

В 90-х годах XIX в. Фрейнд и Густавсон предложили внутримолекулярный вариант. Так 1,3-дибромпропан с успехом может быть превращен в циклопропан действием цинка в присутствии иодида натрия, как активатора. По этому пути удалось получить бисспироциклопропан и бициклобутан . Позже было предложено генерировать промежуточные соединения Гриньяра , которые впоследствии при действии трифторацетата серебра ведут к внутримолекулярному кросс-сочетанию. Этот метод неприменим для получения средних циклов.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Реакция Вюрца" в других словарях:

    Реакция Вюрца, или синтез Вюрца метод синтеза симметричных насыщенных углеводородов действием металлического натрия на алкилгалогениды (обычно бромиды или иодиды): 2RBr + 2Na → R R + 2NaBr Реакция Вюрца открыта Ш. А. Вюрцем (1855). P.Фиттиг… … Википедия

    Метод синтеза насыщенных углеводородов действием металлического натрия на алкилгалогениды (обычно бромиды или иодиды): 2RBr + 2Na → R R + 2NaBr. B. p. открыта Ш. А. Вюрцем. (1855). P. Фиттиг распространил В. р. на… … Большая советская энциклопедия

    Конденсация алкилгалогенидов под действием Na (реже Li или К) с образованием предельных углеводородов: 2RHal + 2Na > RЧR + 2NaHal, где Hal обычно Br или I. При использовании в р ции разл. алкилгалогенидов (RHal и R Hal) образуется… … Химическая энциклопедия

    - … Википедия

    Синтез орг. соединений с применением магнийорг. галогенидов RMgHal (реактивов Гриньяра). Последние обычно получают по р ции: RHal + Mg > RMgHal. При этом р р RHal в диэтиловом эфире медленно при перемешивании прибавляют к суспензии Mg в этом же р … Химическая энциклопедия

    См. Вюрца реакция … Химическая энциклопедия

    Получение эфиров b гидроксикарбоновых к т взаимод. альдегидов или кетонов с эфирами a галогенкарбоновых к т в присут. Zh (т. наз. классическая P.p.): В р цию вступают разл. альдегиды и кетоны (насыщенные или ненасыщенные, ароматические,… … Химическая энциклопедия

    В органической химии существует огромное число реакций, носящих имя исследователя, открывшего или исследовавшего данную реакцию. Часто в названии реакции фигурируют имена нескольких ученых: это могут быть авторы первой публикации (например,… … Википедия

    Эта статья о химических соединениях. О канадской алюминиевой компании см. Rio Tinto Alcan … Википедия

    Шарль Адольф Вюрц Charles Adolphe Würtz … Википедия

Книги

  • Жизнь замечательных устройств , Курамшин Аркадий Искандерович , Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один… Категория: Химические науки Серия: Научпоп Рунета Издатель: АСТ ,
  • Жизнь замечательных устройств , Курамшин А. , Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один… Категория:
Автор Химическая энциклопедия г.р. И.Л.Кнунянц

ВЮРЦА РЕАКЦИЯ , конденсация алкилгалогенидов под действием Na (реже - Li или К) с образованием предельных углеводородов:

2RHal + 2Na -> R-R + 2NaHal,

где Hal - обычно Br или I. При использовании в реакции различные алкилгалогенидов (RHal и R»Hal) образуется трудноразделяемая смесь всех возможных продуктов (R-R, R»-R», R»-R). ВЮРЦА РЕАКЦИЯ р. легко протекает, если алкилгалогенид имеет большую мол. массу, а галоген связан с первичным атомом С. Процесс проводят при низких температурах в сольватирующих растворителях. Так, в ТГФ реакция осуществляется быстро и с хорошим выходом уже при - 80 °С.

Предполагается, что механизм реакции включает образование ион-радикалов и радикалов:

Однако факт обращения конфигурации некоторых оптически активных алкилгалогенидов (например, 2-хлороктана в реакции с Na) не исключает возможности гетеролитич. механизма.

Реакция открыта Ш. Вюрцем в 1855 и используется главным образом для получения углеводородов с длинной углеродной цепью. В др. случаях, особенно при получении несимметричных ал-канов, применяют различные модификации ВЮРЦА РЕАКЦИЯ р., рассмотренные ниже.

Для синтеза жирноароматические соединение используют модификацию Фиттига (реакцию Вюрца-Фиттига):

ArHal + RHal + 2Na -> Ar-R + 2NaHal

Реакция открыта Р. Фиттигом в 1855. Часто с хорошим выходом образуются алканы с использованием реактива Гриньяра, например:

Несимметричные предельные углеводороды получают, используя медьорганическое соединение:

Реакцию, подобную ВЮРЦА РЕАКЦИЯ р., используют для синтеза элементоорганическое соединение и бициклический соединение, например:

Химическая энциклопедия. Том 1 >>

Хотя можно представить, что RR образуется следующим образом:

где М – металл,

но все же основной реакционный поток протекает по другому пути:

Эта стадия протекает следующим образом:

Эта реакция может рассматриваться одновременно и как S N 2-, и как S E 2-замещение, а также как «синхронный» четырехцентровой процесс (Пальм, стр. 315-316):

Истинно синхронный механизм предполагает образование ковалентной связи между металлом М и галогеном Х. Однако процесс типа S E 2–S N 2, когда противоположные заряды возникающих ионов М + и Х - в активированном состоянии расположены рядом и электростатически стабилизируют друг друга, что равносильно частичному возникновению ионной связи – также можно назвать «синхронным».

(3) Побочно может протекать диспропорционирование:

Фактически олефин RCH=CH 2 образуется из субстрата RCH 2 CH 2 Cl в результате Е2-элиминирования под действием основания RСH 2 CH 2 y .

г) Катализируемая основаниями реакция Манниха

Реакция Манниха – это реакция аминометилирования. В качестве аминокомпонента используют вторичные и первичные алифатические и ароматические амины, в качестве метиленового компонента – формальдегид (в виде водного раствора – формалина или в виде параформа), реже – ацетальдегид. В качестве аминометилирующего агента может использоваться заранее приготовленный аминаль.

В качестве катализирующего реакцию основания может выступать сам аминокомпонент.

СН-кислота может вступать в реакцию аминометилирования также в енольной форме, с образованием циклического переходного состояния.

В кислых средах аминометилирование протекает по другому механизму, с участием высоко реакционноспособного интермедиата – карбений-иммониевого иона, являющегося азотистым аналогом формальдегида (здесь этот механизм не рассматривается; подробно см. Беккер, с. 301-302, 394-395; «Практикум», Беккер, с. 150-155; Марч, т. 3, с. 344-347).

3) Присоединение по двойным связям (обычно С=О)

К этому типу реакций карбанионов относится целая группа синтетически важных реакций:

а) Ацилирование сложных эфиров сложными эфирами (конденсация Кляйзена)

б) Альдольная конденсация и другие аналогичные реакции

Катализируемая основаниями альдольная конденсация основана на способности карбонильного соединения реагировать как в качестве карбокислоты (карбаниона, т. е. нуклеофила) за счет кислых a-С–Н-водородов, так и в качестве электрофила за счет электрофильного карбонильного углерода.

На последней стадии образовавшийся алкоголят-ион отрывает протон от ранее образовавшегося протонированного основания (или от растворителя), переходя в незаряженный продукт конденсации (b-гидроксиальдегид или b-гидроксикетон), при этом регенерируется катализатор (гидроксид-ион). Предпосылкой для осуществления этой стадии «нейтрализации» является более высокая основность алкоголят-иона (рК а 17-19) по сравнению с гидроксид-ионом (рК а 15,7). Если же оснόвный катализатор имеет более высокую основность, чем алкоголят-ион, то стадия «нейтрализации» не может осуществиться, и для конденсации необходимо применять эквимолярное количество основания. Пример такой конденсации будет рассмотрен позднее.


Если получающееся b-гидроксикарбонильное соединение все еще содержит кислый a-С–Н-водород, то в сильно щелочной водной среде оно также способно образовать соответствующий карбанион, который может присоединяться к молекуле исходного карбонильного соединения и т. д. [Сайкс, с. 117-118]. С другой стороны, поскольку оно содержит карбонильную группу, то может присоединять карбанион исходного соединения. В результате при действии сильного основания на такие альдегиды, как, например, ацетальдегид, образуются низкомолекулярные полимеры. Реакцию можно остановить после первого «простого» присоединения, используя слабые основания, например, карбонат калия.

Реакции альдольной конденсации могут осложняться процессом «кротонизации» (кротоновой конденсации). В цвиттер-ионной таутомерной форме b-гидроксикарбонильного соединения возникает обстановка сильного выталкивания с участием двойной связи в качестве проводника электронного смещения [Пальм, с. 377]:

В образующемся ненасыщенном карбонильном соединении двойная связь сопряжена с карбонильной группой, и это в некоторой степени способствует его образованию. Однако реакция кротонизации особенно характерна для систем с ароматическими заместителями, поскольку как цвиттер-ион, так и активированный комплекс, напоминающий продукт реакции, стабилизированы сопряжением двойной связи с p-электронной системой ароматического ядра. Результат реакции эквивалентен дегидратации соответствующего b-гидроксикетона (или альдегида).

Следует отметить, что дегидратация, вызванная действием основания – редкое явление. Как правило, отщепление молекулы воды протекает в условиях кислотного катализа.

Предложен и другой механизм кротонизации, предполагающий ее протекание через карбанион b-гидроксикарбонильного соединения [Сайкс, с. 118]:

Смешанные реакции альдольной конденсации, например, реакции с двумя разными альдегидами, обычно не имеют практического значения, поскольку при взаимодействии двух альдегидов с двумя полученными из них анионами образуется смесь четырех различных продуктов. Однако некоторые «смешанные» альдольные реакции могут представлять практический интерес в том случае, если один из карбонильных компонентов, например, бензальдегид, не может образовывать карбанион, а поэтому может только присоединять карбанион, генерированный из другого карбонильного компонента. Пример такой реакции приведен выше, при рассмотрении механизма кротонизации по Пальму. К этому типу реакций относится также реакция альдольной конденсации (с кротонизацией) ацетальдегида с бензальдегидом:

Обычная альдольная конденсация (т. е. несмешанная) невозможна для альдегидов, не имеющих a-С–Н-связей, а именно: для формальдегида HCHO, бензальдегида PhCHO или R 3 CCHO – и поэтому не способных образовывать карбанионы обсуждаемого типа. При взаимодействии любого из таких альдегидов с водным раствором основания гидроксильный ион просто присоединяется к карбонильной группе. Однако при использовании сильного основания в больших концентрациях такие альдегиды подвергаются окислительно-восстановительному диспропорционированию (реакция Канницаро), когда из двух молекул альдегида одна окисляется до соответствующей кислоты (в виде аниона), а другая восстанавливается до соответствующего спирта:

Поскольку формальдегид вследствие большой электроотрицательности карбонильной группы все же является карбокислотой, то он способен к своеобразной альдольной конденсации в щелочной среде:

Таким путем образуются полигидроксиальдегиды и кетоны, в том числе представители класса моносахаридов.

Если карбонильной компонентой, реагирующей с C–H-кислотным карбонильным соединением, является производное карбоновой кислоты (сложный эфир, ангидрид, галогенангидрид), то обязательно происходит конденсация наподобие кротоновой, только отщепляется спирт, карбоновая кислота или гидрогалогенид, соответственно. В результате получаются резонансно-стабилизированные анионы (еноляты) b-дикарбонильных соединений:

Вследствие своей небольшой основности анионы b-дикарбонильных соединений, как правило, не способны регенерировать из протонированного оснόвного «катализатора» свободное основание (например, алкоголят-ион), поэтому необходимо использовать эквимолярное количество основного агента. Если же X=OCOR или Hal, то необходим еще один моль основания; таким образом в таких случаях всего берут два моля основания: 1 моль – чтобы генерировать анион С–Н-кислотного карбонильного соединения, и еще 1 моль – чтобы нейтрализовать выделяющуюся кислоту RCOOH или HHal.

Необходимо отметить, что альдольная конденсация может протекать также по кислотно-каталитическому механизму:

В качестве катализаторов могут выступать как протонные кислоты, так и кислоты Льюса (например, BF 3). Кислотный катализатор повышает карбонильную активность и, кроме того, катализирует енолизацию кислотной компоненты. Енол благодаря оснόвным свойствам двойной связи атакует карбонильную группу как нуклеофильный реагент. Однако в кислой среде образовавшийся альдоль немедленно дегидратируется, т. е. в итоге происходит кротоновая конденсация.

См. также Реутов, т. 1, стр. 490-491.

2.1. Реакция Бутлерова А.М.

Получение сахаров из формальдегида под действием щелочей:

В результате реакции получается смесь сахаров.

2.2. Реакция Вагнера Е.Е.

Окисление алкенов в цис - α - гликоли действием разбавленного раствора перманганата калия в щелочной среде (гидроксилирование):

2.3. Реакция Вюрца

Получение углеводородов конденсацией алкилгалогенидов при действии металлического натрия:

2.4. Реакция Вюрца - Гриньяра

Образование углеводородов при взаимодействии алкил (арил) галогенидов с реактивом Гриньяра:

2.5. Реакция Вюрца - Фиттига

Получение жирноароматических углеводородов конденсацией ароматических галогенопроизводных с алкилгалогенидами в присутствии натрия:

2.6. Реакция Гарриеса

Окислительное расщепление алкенов путем озонирования и последующего гидролиза (озонолиз):

2.7. Реакция Гаттермана - Коха

Реакция формилирования ароматических углеводородов действием окиси углерода и хлористого водорода в присутствии AlCl 3:

2.8. Реакция Гелля - Фольгарда - Зелинского

Получение α - галогензамещенных кислот действием хлора или брома в присутствии фосфора:

2.9. Реакция Гофмана

Получение алифатических аминов алкилированием аммиака алкилгалогенидами:

2.10. Реакция Гофмана (перегруппировка)

Перегруппировка амидов кислот в первичные амины с потерей одного атома углерода в растворе гипохлоритов:

2.11. Реакции Гриньяра (магнийорганический синтез)

Реакции синтеза органических соединений на основе присоединения реактива Гриньяра к связи >С = О:

2.12. Реакция Дильса - Альдера (диеновый синтез)

Присоединение соединений с активированной двойной связью (диенофилов) к сопряженным диенам с образованием циклических структур. Присоединение идет по типу 1,4:

2.13. Реакция Зандмейера

Замена диазогруппы в ароматических соединениях на галоген или другую группу действием солей одновалентной меди:

2.14. Реакция Зелинского

Получение α - аминокислот из альдегидов или кетонов при действии смеси цианида калия и хлорида аммония (цианида аммония):

2.15. Реакция Зинина

Восстановление ароматических нитросоединений в амины:

Зинин использовал для восстановления сульфид аммония, в промышленности для восстановления нитросоединений применяют чугунные стружки в кислой среде.

2.16. Реакция Иоцича

Получение алкинилмагнийгалогенидов (реактивов Иоцича) с помощью реактива Гриньяра:

2.17. Реакция Канниццаро

Окислительно-восстановительное диспропорционирование двух молекул ароматического альдегида в соответствующие спирт и кислоту под действием щелочей. В эту реакцию вступают также алифатические и гетероциклические альдегиды, не содержащие в α - положении подвижного водорода:

Перекрестная реакция Канниццаро

2.18. Реакция (конденсация) Кляйзена

Получение эфиров коричных кислот конденсацией ароматических альдегидов с эфирами карбоновых кислот, карбонильными соединениями.

2.19. Реакция Кольбе

Получение углеводородов электролизом растворов щелочных солей алифатических карбоновых кислот:

На аноде анион кислоты разряжается в неустойчивый радикал кислоты, который распадается свыделением диоксида углерода, и образующиеся алкильные радикалы спариваются в углеводород:

2. 20. Реакция Кольбе-Шмитта

Получение ароматических оксикислот термическим карбоксилированием фенолятов щелочных металлов двуокисью углерода:

2. 21. Реакция Коновалова

Нитрование алифатических, алициклических и жирноароматических соединений азотной кислотой (12-20%):

2.22. Реакция Кучерова

Каталитическая гидратация ацетилена, его гомологов и производных с образованием альдегидов и кетонов:

а) при гидратации ацетилена получается ацетальдегид:

б) при гидратации гомологов ацетилена получаются кетоны:

2.23. Реакция Лебедева

Получение бутадиена каталитическим пиролизом (450˚C) этилового спирта:

2.24. Реакция Перкина

Получение α,β - ненасыщенных кислот конденсацией ароматических альдегидов с ангидридами карбоновых кислот:

2.25. Реакция Рашига

Промышленное получение фенола каталитическим хлорированием бензола с последующим гидролизом хлорбензола водяным паром:

2.26. Реакция Реформатского

Получение β - оксикарбоновых кислот взаимодействием альдегидов или кетонов с эфирами α - галогенкарбоновых кислот под действием металлического цинка:

2.27. Реакция Родионова

Получение β - аминокислот конденсацией альдегидов с малоновой кислотой и аммиаком в спиртовом растворе:

2,28. Реакция Тищенко

Конденсация альдегидов с образованием сложных эфиров под действием алкоголятов алюминия:

2.29. Реакция Фаворского

Взаимодействие алкинов с альдегидами и кетонами:

2.30. Реакция Фриделя-Крафтса

Алкилирование или ацилирование ароматических соединений алкил- или ацилгалогенидами в присутствии хлористого алюминия:

а) алкилирование:

б) ацилирование:

2.31. Реакция Чичибабина

Реакция взаимодействия пиридина с амидом натрия (α-аминирование):

2.32. Реакция Чугаева-Церевитинова

Взаимодействие органических соединений, содержащих подвижный атом водорода, с реактивом Гриньяра с выделением метана:

2.33. Реакция Шиффа

Взаимодействие альдегидов с аминами в присутствии щелочи приводит к образованию азометинов (оснований Шиффа):

2.34. Реакция Штреккера

Получение α - аминокислот из альдегидов и кетонов действием аммиака и синильной кислоты с последующим гидролизом образовавшихся аминонитрилов:

2.35. Реакция Юрьева

Именные органические реакции

В органической химии существует огромное число реакций, носящих имя исследователя, открывшего или исследовавшего данную реакцию.

Именные реакции можно найти во многих справочниках по органической химии, но я хочу разделить их по классам химических соединений. И, конечно, это далеко не все именные реакции, это те реакции, которые часто встречаются в школьном курсе органической химии.

Именные реакции :

  • Реакция Вюрца — «именная» реакция удлинения цепи, а точнее, удвоение количества атомов углерода:

C2H5Cl + 2Na +Cl C2H5 → C4H10 + 2NaCl (из этана получили бутан)

  • Реакция Коновалова: c разбавленной азотной кислотой под давлением алканы нитруются:

С2H6 + HNO3 (HO-NO2) → С2H5NO2 + H2O (нитроэтан)

  • Еще одна «именная» реакция: реакция Кольбе: электролиз солей :

2СH3COONa -(электролиз)-→ СH3-CH3 (этан) + 2СO2 +2Na

Именные реакции :

  • Присоединение по правилу Марковникова:

водород присоединяется к наиболее гидрогенезированному (= к тому, у которого больше водородов) атому углерода при двойной связи:

С H2=C H-CH3 + H Cl = CH 3-C HCl -CH3

  • Обратная реакция — дегидрирования — правило Зайцева — водород отнимается от самого ненасыщенного водородами (наименее гидрогенизированного) атома углерода.

Именные реакции :

  • реакция Кучерова

    CH 3 -C≡CH + H 2 O -> (катализатор — Hg 2+) -> CH 3 -C(=O)-CH 3

Именные реакции

  • Ту структурную формулу, которую мы сейчас используем — «скворечник», называют формулой Кекуле:

  • Реакция Зинина — восстановление нитробензола и его нитрогомологов:

  • Реакция Фриделя-Крафтца — алкилирование аренов:


Как это может быть применимо в ЕГЭ? Представьте себе, было как-то такое задание в части В:

Соотнесите именную реакцию или правило с той или иной реакцией или нужным правилом

1. Реакция Вюрца 1. 2CH3CH2OH → CH2=CH–CH=CH2 (+ H2; + 2H2O)

2. Реакция Кучерова 2. R–H + HNO3 → R–NO2 (+ H2O)

3. Реакция Зелинского 3. 2C2H5I + 2Na → н-C4H10 (+ 2NaI)

4. Реакция Коновалова 4. цикло-C6H12 → C6H6 (+ 3H2)

5. Реакция Зинина 5. C2H2 + H2O → CH3CHO

6. Реакция Бутлерова 6. C6H5NO2 + H2 (H+) → C6H5NH2

7. Правило Марковникова 7. CH3CH2CH(OH)CH3 → CH3CH=CHCH3 (+ H2O)

8. Правило Зайцева 8. CH3CH2CH=CH2 + HCl → CH3CH2–CHCl–CH3

Вообще, такие задания — именные реакции -редкость в ЕГЭ, но лучше знать, чем потом ломать голову над такой задачкой! Да и повторить еще раз основные органические реакции — не лишнее.

Еще на эту тему:

© 2024 Helperlife - Строительный портал