Вконтакте Facebook Twitter Лента RSS

Столкновение частиц в коллайдере. Как ученые разгоняют частицы в адронном коллайдере? И что происходит при столкновении частиц? Каким образом из воздуха извлекается азот

В начале XX века в физике появились две основополагающие теории - общая теория относительности (ОТО) Альберта Эйнштейна, которая описывает Вселенную на макроуровне, и квантовая теория поля, которая описывает Вселенную на микроуровне. Проблема в том, что эти теории несовместимы друг с другом. Например, для адекватного описания происходящего в чёрных дырах нужны обе теории, а они вступают в противоречие.

Эйнштейн многие годы пытался разработать единую теорию поля, но безуспешно, поскольку игнорировал квантовую механику. В конце 1960-х физикам удалось разработать Стандартную модель (СМ), которая объединяет три из четырёх фундаментальных взаимодействий - сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах ОТО. Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: ОТО и СМ. Их объединения пока достичь не удалось из-за трудностей создания теории квантовой гравитации.

Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, получившая своё развитие в М-теории (теории бран), теория супергравитации, петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц.

БАК позволит провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» - например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий.

Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса - частицы, предсказанной шотландским физиком Питером Хиггсом в 1960 году в рамках Стандартной Модели. Бозон Хиггса является квантом так называемого поля Хиггса, при прохождении через которое частицы испытывают сопротивление, представляемое нами как масса. Сам бозон нестабилен и имеет большую массу (более 120 ГэВ). На самом деле, физиков интересует не столько сам хиггсовский бозон, сколько хиггсовский механизм нарушения симметрии электрослабого взаимодействия. Именно изучение этого механизма, возможно, натолкнёт физиков на новую теорию мира, более глубокую, чем СМ.

Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» - теории, гласящей, что любая элементарная частица имеет гораздо более тяжёлого партнера, или «суперчастицу».

Теоретики в конце XX века выдвинули огромное число необычных идей относительно устройства мира, которые все вместе называются «экзотическими моделями». Сюда относятся теории с сильной гравитацией на масштабе энергий порядка 1 ТэВ, модели с большим количеством пространственных измерений, преонные модели, в которых кварки и лептоны являются составными частицами, модели с новыми типами взаимодействия. Дело в том, что накопленных экспериментальных данных оказывается всё ещё недостаточно для создания одной-единственной теории. А сами все эти теории совместимы с имеющимися экспериментальными данными. Поскольку в этих теориях можно сделать конкретные предсказания для БАК, экспериментаторы планируют проверять предсказания и искать следы тех или иных теорий в своих данных. Ожидается, что результаты, полученные на ускорителе, смогут ограничить фантазию теоретиков, закрыв некоторые из предложенных конструкций.

Также ожидается обнаружение физических явлений вне рамок Стандартной Модели. Планируется исследование свойств W и Z-бозонов, ядерных взаимодействий при сверхвысоких энергиях, процессов рождения и распадов тяжёлых кварков (b и t).

27-километровый подземный туннель, предназначенный для размещения ускорителя LHCИдея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя - Большого электрон-позитронного коллайдера.

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ (5,5·109 электронвольт) на каждую пару сталкивающихся нуклонов. Таким образом, БАК будет самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии своих ближайших конкурентов - протон-антипротонный коллайдер Тэватрон, который в настоящее время работает в Национальной ускорительной лаборатории им. Энрико Ферми (США), и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,7 км проложен на глубине около ста метров под землёй на территории Франции и Швейцарии. Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года. Магниты будут работать при температуре 1,9 K (271 °C). Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года.

2008 год

11 августа успешно завершена первая часть предварительных испытаний. Во время испытаний пучок заряженных частиц прошёл чуть более трёх километров по одному из колец БАК. Таким образом, учёным удалось проверить работу синхронизации предварительного ускорителя, так называемого протонного суперсинхротрона (SPS), и системы правой доставки луча. Эта система передаёт в основное кольцо разогнанные пучки таким образом, что они начинают двигаться по кольцу по часовой стрелке. В результате испытаний удалось оптимизировать работу системы.

24 августа прошёл второй этап испытаний. Была протестирована инжекция протонов в ускорительное кольцо БАК в направлении против часовой стрелки.

10 сентября был произведён официальный запуск коллайдера. В 12:24:30 по московскому времени (по официальной информации, в 12:28 по московскому времени) запущенный пучок протонов успешно прошёл весь периметр коллайдера по часовой стрелке. В 17:02 по московскому времени запущенный против часовой стрелки пучок протонов также успешно прошёл весь периметр коллайдера.

12 сентября, примерно в 00:30 по московскому времени, команде БАК удалось запустить и непрерывно удерживать циркулирующий пучок в течение 10 минут. Чуть позже пучок был запущен вновь и циркулировал уже непрерывно, прерываясь лишь в случае необходимости. На этом задача по установлению циркулирующего пучка завершилась, и физики приступили к подробным тестам магнитной системы.

19 сентября, в 14:05 по московскому времени, в ходе тестов магнитной системы сектора 3-4 (34) произошёл инцидент, в результате которого БАК вышел из строя. Согласно данным предварительного расследования, подтверждённым и детализированным позднее, один из электрических контактов между сверхпроводящими магнитами расплавился под действием возникшей из-за увеличения силы тока электрической дуги, которая пробила изоляцию гелиевой системы охлаждения (криогенной системы), что привело к выбросу около 6 тонн жидкого гелия в туннель и, как следствие, резкому росту температуры. Для восстановления криогенной системы потребуется вернуть этот участок ускорителя к комнатной температуре, а после ремонта - охладить его снова до рабочей температуры.

23 сентября официальный представитель ЦЕРНа сообщил, что БАК возобновит работу не раньше весны 2009 года.

16 октября ЦЕРН распространил пресс-релиз, в котором описываются промежуточные результаты расследования инцидента, произошедшего 19 сентября. Подробная техническая информация представлена в четырёхстраничном отчёте.

29 октября, в ходе восьмого заседания Комиссии по работе LHC (LHC Performance Committee), Роберто Сабан (Roberto Saban) озвучил подробности, касающиеся сектора 3-4 ускорительного кольца LHC, который пострадал во время сентябрьской аварии. Докладчик показал схему повреждённого участка ускорительного кольца, на которой было отмечено, насколько сместились те или иные магниты во время аварии. Новый анализ показал, что поднимать на поверхность для ремонта потребуется в 2-3 раза больше магнитов, чем было заявлено первоначально (речь уже идёт как минимум о полусотне магнитов и так называемых коротких прямых участков). Сейчас разрабатывается подробный план действий для того, чтобы к концу декабря 2008 года поднять на поверхность все магниты, требующие ремонта. Кроме того, оказалось, что на внутренних стенках вакуумных труб осели частички металлов (прежде всего, меди и нержавеющей стали) и некоторых других материалов (стекловолокна), выброшенные в вакуумную трубу в момент аварии. Они достаточно крупные, размером в десятки микронов, и от них необходимо избавиться, поскольку они будут мешать движению протонных пучков. Первая пробная чистка уже началась, и сейчас разрабатываются более надёжные крепления к полу и новая сеть клапанов, предотвращающих слишком сильный рост давления внутри криостатов в случае аварийной ситуации. Именно из-за резко возросшего давления в конечном счёте и произошло повреждение магнитов. По последним данным при благоприятном исходе ремонтных работ возобновление работы БАК произойдёт в июле 2009.

На следующем этапе испытаний будут производиться одновременные запуски пучков навстречу друг другу, чтобы наблюдать, что происходит при их «лобовых» столкновениях. Затем частицы будут сталкиваться на более высоких энергиях. Выход на энергию 14 ТэВ протон-протонного столкновения намечен на 2009 год.

2009 год

На прошедшей в феврале 2009 года конференции Chamonix-2009 была принята программа работы на ближайшие два года: запуск в октябре-ноябре 2009 года и работа без зимнего перерыва вплоть до осени 2010 года. Ожидается, что работа будет вестись на энергии пучков 5 ТэВ. К концу 2010 года планируется накопить интегральную светимость порядка 200 pb1, которой должно хватить для получения новых результатов. Для вступления в силу этот план работ должен быть одобрен на заседании директората ЦЕРНа, которое состоится в понедельник, 9 февраля.

Подземный зал, в котором смонтирован детектор ATLAS (октябрь 2004 года)

Детектор ATLAS в процессе сборки (февраль 2006 года)Светимость БАК во время первого пробега составит всего 1029 частиц/см·с. Это весьма скромная величина. Однако, после запуска БАК для экспериментальных исследований, светимость будет постепенно повышаться от начальной 5·1032 до номинальной 1,7·1034 частиц/см·с, что по порядку величины соответствует светимостям современных B-фабрик BaBar (SLAC, США) и Belle (KEK, Япония). Выход на номинальную светимость планируется в 2010 году.

На БАК будут работать шесть детекторов: ALICE (A Large Ion Collider Experiment), ATLAS (A Toroidal LHC ApparatuS), CMS (Compact Muon Solenoid), LHCb (The Large Hadron Collider beauty experiment), TOTEM (TOTal Elastic and diffractive cross section Measurement) и LHCf (The Large Hadron Collider forward). Детекторы ATLAS и CMS предназначены для поиска бозона Хиггса и «нестандартной физики», в частности тёмной материи, ALICE - для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца, LHCb - для исследования физики b-кварков, что позволит лучше понять различия между материей и антиматерией, TOTEM - для изучения несталкивающихся частиц (forward particles), что позволит точнее измерить размер протонов, а также контролировать светимость коллайдера, и, наконец, LHCf - для исследования космических лучей, моделируемых с помощью тех же несталкивающихся частиц.

Россия принимает активное участие как в строительстве БАК, так и в создании всех детекторов, которые должны работать на коллайдере.

Процесс ускорения частиц в коллайдере

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших скоростей достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем пучок направляют в главное 26,7-километровое кольцо и в точках столкновения детекторы фиксируют происходящие события.

Потребление энергии

Во время работы коллайдера расчётное потребление энергии составит 180 МВт. Предположительные энергозатраты всего CERNа на 2009 год с учётом работающего коллайдера - 1000 ГВт·ч, из которых 700 ГВт·ч придётся на долю ускорителя. Эти энергозатраты - около 10 % от суммарного годового энергопотребления кантона Женева. Сам CERN не производит энергию, имея лишь резервные дизельные генераторы.

Для управления, хранения и обработки данных, которые будут поступать с ускорителя БАК и детекторов, создаётся распределённая вычислительная сеть LCG (англ. LHC Computing GRID), использующая технологию грид. Для определённых вычислительных задач будет задействован проект распределённых вычислений LHC@home.

Некоторые специалисты и представители общественности высказывают опасения, что имеется отличная от нуля вероятность выхода проводимых в коллайдере экспериментов из-под контроля и развития цепной реакции, которая при определённых условиях теоретически может уничтожить всю планету. Точка зрения сторонников катастрофических сценариев, связанных с работой БАК, изложена на отдельном сайте. Из-за подобных настроений БАК иногда расшифровывают как Last Hadron Collider (Последний Адронный Коллайдер).

В этой связи наиболее часто упоминается теоретическая возможность появления в коллайдере микроскопических чёрных дыр, а также теоретическая возможность образования сгустков антиматерии и магнитных монополей с последующей цепной реакцией захвата окружающей материи.

Указанные теоретические возможности были рассмотрены специальной группой CERN, подготовившей соответствующий доклад, в котором все подобные опасения признаются необоснованными. Английский физик-теоретик Эдриан Кент опубликовал научную статью с критикой норм безопасности, принятых CERN, поскольку ожидаемый ущерб, то есть произведение вероятности события на число жертв, является, по его мнению, неприемлемым. Тем не менее, максимальная верхняя оценка вероятности катастрофического сценария на БАК составляет 10-31.

В качестве основных аргументов в пользу необоснованности катастрофических сценариев приводятся ссылки на то, что Земля, Луна и другие планеты постоянно бомбардируются потоками космических частиц с гораздо более высокими энергиями. Упоминается также успешная работа ранее введённых в строй ускорителей, включая релятивистский коллайдер тяжёлых ионов RHIC в Брукхейвене. Возможность образования микроскопических чёрных дыр не отрицается специалистами CERN, однако при этом заявляется, что в нашем трёхмерном пространстве такие объекты могут возникать только при энергиях, на 16 порядков больших энергии пучков в БАК. Гипотетически микроскопические чёрные дыры могут появляться в экспериментах на БАК в предсказаниях теорий с дополнительными пространственными измерениями. Такие теории пока не имеют каких-либо экспериментальных подтверждений. Однако, даже если чёрные дыры будут возникать при столкновении частиц в БАК, предполагается, что они будут чрезвычайно неустойчивыми вследствие излучения Хокинга и будут практически мгновенно испаряться в виде обычных частиц.

21 марта 2008 года в федеральный окружной суд штата Гавайи был подан иск Уолтера Вагнера (англ. Walter L. Wagner) и Луиса Санчо (англ. Luis Sancho), в котором они, обвиняя CERN в попытке устроить конец света, требуют запретить запуск коллайдера до тех пор, пока не будет гарантирована его безопасность.

Аргументы в пользу катастрофического сценария

По мнению сторонников катастрофического сценария, существует принципиальная разница между бомбардировкой Земли космическими частицами и экспериментами на ускорителе. В первом случае сталкиваются прилетающие из космоса ультрарелятивистские (летящие со скоростью, близкой к скорости света) элементарные частицы с элементарными частицами на Земле, скорость которых мала. Образующиеся частицы также являются ультрарелятивистскими и улетают в космическое пространство, не успев причинить Земле никакого вреда. В коллайдере же сталкиваются пучки элементарных частиц, летящие с ультрарелятивистскими скоростями в противоположных направлениях. Образующиеся микроскопические чёрные дыры и другие опасные частицы могут вылетать с любыми скоростями. Некоторые из них будут настолько медленными, что не смогут покинуть Землю.

Общая теория относительности в виде, предложенном Эйнштейном, не допускает возникновения микроскопических чёрных дыр в коллайдере. Однако они будут возникать, если верны теории с дополнительными пространственными измерениями. По мнению сторонников катастрофического сценария, хотя такие теории и умозрительны, вероятность того, что они верны, составляет десятки процентов. Излучение Хокинга, приводящее к испарению чёрных дыр, также является гипотетическим - оно никогда не было экспериментально подтверждено. Поэтому есть достаточно большая вероятность того, что оно не действует.

Кроме того, высока вероятность образования страпелек. В случае развития колосальных энергий(10 в 39 ст. МэВ) возможен кварковый распад. Однако такой исход событий имеет вероятность куда ниже, чем образования черной дыры, или образования страпелек.

Аргументы противников катастрофического сценария

Ускоритель предназначен для сталкивания таких частиц, как адроны и атомарные ядра. Однако, существуют природные источники частиц, скорость и энергия которых значительно выше, чем в коллайдере (см.: Зэватрон). Такие природные частицы обнаруживают в космических лучах. Поверхность планеты Земля частично защищена от этих лучей, но, проходя через атмосферу, частицы космических лучей сталкиваются с атомами и молекулами воздуха. В результате этих природных столкновений в атмосфере Земли рождается множество стабильных и нестабильных частиц. В результате, на планете уже в течение многих миллионов лет присутствует естественный радиационный фон. То же самое (сталкивание элементарных частиц и атомов) будет происходить и в БАК, однако с меньшими скоростями и энергиями, и в гораздо меньшем количестве.

Микроскопические чёрные дыры

Если чёрные дыры могут возникать в ходе столкновения элементарных частиц, они также будут и распадаться на элементарные частицы, в соответствии с принципом CPT-инвариантности, являющимся одним из самых фундаментальных принципов квантовой механики.

Далее, если бы гипотеза существования стабильных чёрных микро-дыр была верна, то они бы образовывались в больших количествах в результате бомбардировки Земли космическими элементарными частицами. Но большая часть прилетающих из космоса высокоэнергетических элементарных частиц обладают электрическим зарядом, поэтому часть чёрных дыр были бы электрически заряжены. Эти заряженные чёрные дыры захватывались бы магнитным полем Земли и, будь они в самом деле опасны, давно разрушили бы Землю. Механизм Швиммера, делающий чёрные дыры электрически нейтральными, очень похож на эффект Хокинга и не может работать, если эффект Хокинга не работает.

К тому же, любые чёрные дыры, заряженные или электрически нейтральные, захватывались бы белыми карликами и нейтронными звёздами (которые, как и Земля, бомбардируются космическим излучением) и разрушали их. В результате время жизни белых карликов и нейтронных звёзд было бы гораздо короче, чем наблюдаемое в действительности. Кроме того, разрушаемые белые карлики и нейтронные звёзды испускали бы дополнительное излучение, которое в действительности не наблюдается.

Наконец, теории с дополнительными пространственными измерениями, предсказывающие возникновение микроскопических чёрных дыр, не противоречат экспериментальным данным, только если количество дополнительных измерений не меньше трёх. Но при таком количестве дополнительных измерений должны пройти миллиарды лет, прежде чем чёрная дыра причинит Земле сколько-нибудь существенный вред.

Страпельки

Элементарные частицы, состоящие из «верхних», «нижних» и «странных» кварков, и даже более сложные структуры, аналогичные атомным ядрам, обильно производятся в лабораторных условиях, но распадаются за время порядка 10-9 сек. Это обусловлено гораздо большей массой странного кварка по сравнению с верхним и нижним. Вместе с тем существует гипотеза, что достаточно большие «странные ядра», состоящие из примерно равного количества верхних, нижних и странных кварков, могут быть более стабильными. Дело в том, что кварки относятся к фермионам, а принцип Паули запрещает двум одинаковым фермионам находиться в одном и том же квантовом состоянии, вынуждая частицы, «не успевшие» занять низкоэнергетичные состояния, размещаться на более высоких энергетических уровнях. Поэтому если в ядре имеется три разных сорта («аромата») кварков, а не два, как в обычных ядрах, то большее количество кварков может находиться в низкоэнергетических состояниях, не нарушая принципа Паули. Такие гипотетические ядра, состоящие из трёх сортов кварков, и называются страпельками.

Предполагается, что страпельки, в отличие от обычных атомных ядер, могут оказаться устойчивыми по отношению к спонтанному делению даже при больших массах. Если это верно, то страпельки могут достигать макроскопических и даже астрономических размеров и масс.

Предполагается также, что столкновение страпельки с ядром какого-нибудь атома может вызывать его превращение в странную материю, которое сопровождается выделением энергии. В результате во все стороны разлетаются всё новые страпельки, что теоретически может приводить к цепной реакции.

Однако даже в этой ситуации коллайдер не представляет сколько-нибудь новой по сравнению с предшествующими ускорителями опасности, поскольку энергии столкновения частиц в нём на порядки выше, чем те, при которых могут эффективно образовываться ядра (будь то обычные или страпельки). Так что если бы страпельки могли возникать в БАК, они бы в ещё больших количествах возникали и в релятивистском ускорителе тяжёлых ионов RHIC (англ.), поскольку количество столкновений там выше, а энергии ниже. Но этого не происходит.

Машина времени

По информации международного издания New Scientist (англ.), профессор, доктор физико-математических наук Ирина Арефьева и член-корреспондент РАН, доктор физико-математических наук Игорь Волович полагают, что этот эксперимент может привести к созданию машины времени. Они считают, что протонные столкновения могут породить пространственно-временные «кротовые норы».

Противоположных взглядов придерживается доктор физико-математических наук из НИИ ядерной физики МГУ Эдуард Боос, отрицающий возникновение на БАК макроскопических чёрных дыр, а следовательно, «кротовых нор» и путешествий во времени.

В CERN есть филк-группа Les Horribles Cernettes (LHC, та же аббревиатура, что и у БАК). Первая песня этого коллектива «Collider» была посвящена парню, который забыл о своей девушке, увлечённый созданием коллайдера.

В научно-фантастическом телесериале Лексс (The Lexx) в четвертом сезоне главные герои оказываются на Земле. Обнаруживается, что Земля относится к планетам "типа 13", на последней стадии развития. Планеты типа 13 всегда уничтожают себя сами, в результате неудачного опыта по определению массы Хиггз-бозона на сверхмощном ускорителе элементарных частиц, при этом сжимаясь до размеров горошины. В конечном итоге, Земля была уничтожена.

УСКОРИТЕЛЬ ЧАСТИЦ
установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию. В процессе ускорения повышаются скорости частиц, причем нередко до значений, близких к скорости света. В настоящее время многочисленные малые ускорители применяются в медицине (радиационная терапия), а также в промышленности (например, для ионной имплантации в полупроводниках). Крупные же ускорители применяются главным образом в научных целях - для исследования субъядерных процессов и свойств элементарных частиц
(см. также ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ). Согласно квантовой механике, пучок частиц, как и световой пучок, характеризуется определенной длиной волны. Чем больше энергия частиц, тем меньше эта длина волны. А чем меньше длина волны, тем меньше объекты, которые можно исследовать, но тем больше размеры ускорителей и тем они сложнее. Развитие исследований микромира требовало все большей энергии зондирующего пучка. Первыми источниками излучений высокой энергии служили природные радиоактивные вещества. Но они давали исследователям лишь ограниченный набор частиц, интенсивностей и энергий. В 1930-х годах ученые начали работать над созданием установок, которые могли бы давать более разнообразные пучки. В настоящее время существуют ускорители, позволяющие получать любые виды излучений с высокой энергией. Если, например, требуется рентгеновское или гамма-излучение, то ускорению подвергаются электроны, которые затем испускают фотоны в процессах тормозного или синхротронного излучения. Нейтроны генерируются при бомбардировке подходящей мишени интенсивным пучком протонов или дейтронов. Энергия ядерных частиц измеряется в электронвольтах (эВ). Электронвольт - это энергия, которую приобретает заряженная частица, несущая один элементарный заряд (заряд электрона), при перемещении в электрическом поле между двумя точками с разностью потенциалов в 1 В. (1 эВ УСКОРИТЕЛЬ ЧАСТИЦ 1,60219*10-19 Дж.) Ускорители позволяют получать энергии в диапазоне от тысяч до нескольких триллионов (10 12) электронвольт - на крупнейшем в мире ускорителе. Для обнаружения в эксперименте редких процессов необходимо повышать отношение сигнала к шуму. Для этого требуются все более интенсивные источники излучения. Передний край современной техники ускорителей определяется двумя основными параметрами - энергией и интенсивностью пучка частиц. В современных ускорителях используются многочисленные и разнообразные виды техники: высокочастотные генераторы, быстродействующая электроника и системы автоматического регулирования, сложные приборы диагностики и управления, сверхвысоковакуумная аппаратура, мощные прецизионные магниты (как "обычные", так и криогенные) и сложные системы юстировки и крепления.
ОСНОВНЫЕ ПРИНЦИПЫ
Основная схема ускорения частиц предусматривает три стадии:
1) формирование пучка и его инжекция, 2) ускорение пучка и 3) вывод пучка на мишень или осуществление соударения встречных пучков в самом ускорителе.
Формирование пучка и его инжекция. Исходным элементом любого ускорителя служит инжектор, в котором имеется источник направленного потока частиц с низкой энергией (электронов, протонов или других ионов) и высоковольтные электроды и магниты, выводящие пучок из источника и формирующие его. В источниках протонов первых ускорителей газообразный водород пропускался через область электрического разряда или вблизи раскаленной нити. В таких условиях атомы водорода теряют свои электроны и остаются одни ядра - протоны. Такой метод (и аналогичный с другими газами) в усовершенствованном виде по-прежнему применяется для получения пучков протонов (и тяжелых ионов). Источник формирует пучок частиц, который характеризуется средней начальной энергией, током пучка, его поперечными размерами и средней угловой расходимостью. Показателем качества инжектируемого пучка служит его эмиттанс, т.е. произведение радиуса пучка на его угловую расходимость. Чем меньше эмиттанс, тем выше качество конечного пучка частиц с высокой энергией. По аналогии с оптикой ток частиц, деленный на эмиттанс (что соответствует плотности частиц, деленной на угловую расходимость), называют яркостью пучка. Во многих приложениях современных ускорителей требуется максимально возможная яркость пучков.
Ускорение пучка. Пучок формируется в камерах или инжектируется в одну или несколько камер ускорителя, в которых электрическое поле повышает скорость, а следовательно, и энергию частиц. В первых, простейших ускорителях энергия частиц увеличивалась в сильном электростатическом поле, созданном внутри высоковакуумной камеры. Максимальная энергия, которую при этом удавалось достичь, определялась электрической прочностью изоляторов ускорителя. Во многих современных ускорителях в качестве инжекторов еще используются электростатические ускорители электронов и ионов (вплоть до ионов урана) с энергиями от 30 кэВ до 1 МэВ. Получение высокого напряжения и сегодня остается сложной технической проблемой. Его можно получать, заряжая группу конденсаторов, соединенных параллельно, а затем подключая их последовательно к последовательности ускорительных трубок. Таким способом в 1932 Дж.Кокрофт и Э.Уолтон получали напряжения до 1 МВ. Существенный практический недостаток этого способа в том, что на внешних элементах системы оказывается высокое напряжение, опасное для экспериментаторов. Иной способ получения высокого напряжения был изобретен в 1931 Р.Ван-де-Граафом. В генераторе Ван-де-Граафа (рис. 1) лента из диэлектрика переносит электрические заряды от источника напряжения, находящегося под потенциалом земли, к высоковольтному электроду, повышая тем самым его потенциал относительно земли. Однокаскадный генератор Ван-де-Граафа позволяет получать напряжения до 10 МВ. На многокаскадных высоковольтных ускорителях были получены протоны с энергиями до 30 МэВ.

Если требуется не непрерывный пучок, а короткий импульс частиц с высокой энергией, то можно воспользоваться тем, что кратковременно (менее микросекунды) изоляторы способны выдерживать гораздо более высокие напряжения. Импульсные диоды позволяют получать напряжения до 15 МВ на каскад в схемах с очень низким импендансом. Это позволяет получить токи пучка в несколько десятков килоампер, а не в десятки миллиампер, как на электростатических ускорителях. Обычный способ получения высокого напряжения основан на схеме импульсного генератора Маркса, в которой батарея конденсаторов сначала заряжается параллельно, а затем соединяется последовательно и разряжается через один разрядный промежуток. Высоковольтный импульс генератора поступает в длинную линию, которая формирует импульс, задавая его время нарастания. Линия нагружается электродами, ускоряющими пучок. При высокочастотном ускоряющем напряжении конструкция ускорителя выдерживает без пробоя гораздо более сильные электрические поля, чем при постоянном напряжении. Однако применение высокочастотных полей для ускорения частиц затрудняется тем, что знак поля быстро меняется и поле оказывается то ускоряющим, то замедляющим. В конце 1920-х были предложены два способа преодоления этой трудности, которые применяются теперь в большинстве ускорителей.
ЛИНЕЙНЫЕ УСКОРИТЕЛИ
Возможность применения высокочастотных электрических полей в длинных многокаскадных ускорителях основана на том, что такое поле изменяется не только во времени, но и в пространстве. В любой момент времени напряженность поля изменяется синусоидально в зависимости от положения в пространстве, т.е. распределение поля в пространстве имеет форму волны. А в любой точке пространства она изменяется синусоидально во времени. Поэтому максимумы поля перемещаются в пространстве с так называемой фазовой скоростью. Следовательно, частицы могут двигаться так, чтобы локальное поле все время их ускоряло. В линейных ускорительных системах высокочастотные поля были впервые применены в 1929, когда норвежский инженер Р.Видероэ осуществил ускорение ионов в короткой системе связанных высокочастотных резонаторов. Если резонаторы рассчитаны так, что фазовая скорость поля всегда равна скорости частиц, то в процессе своего движения в ускорителе пучок непрерывно ускоряется. Движение частиц в таком случае подобно скольжению серфера на гребне волны. При этом скорости протонов или ионов в процессе ускорения могут сильно увеличиваться. Соответственно этому должна увеличиваться и фазовая скорость волны vфаз. Если электроны могут инжектироваться в ускоритель со скоростью, близкой к скорости света с, то в таком режиме фазовая скорость практически постоянна: vфаз = c. Другой подход, позволяющий исключить влияние замедляющей фазы высокочастотного электрического поля, основан на использовании металлической конструкции, экранирующей пучок от поля в этот полупериод. Впервые такой способ был применен Э.Лоуренсом в циклотроне (см. ниже); он используется также в линейном ускорителе Альвареса. Последний представляет собой длинную вакуумную трубу, в которой расположен целый ряд металлических дрейфовых трубок. Каждая трубка последовательно соединена с высокочастотным генератором через длинную линию, вдоль которой со скоростью, близкой к скорости света, бежит волна ускоряющего напряжения (рис. 2). Таким образом, все трубки по очереди оказываются под высоким напряжением. Заряженная частица, вылетающая из инжектора в подходящий момент времени, ускоряется в направлении первой трубки, приобретая определенную энергию. Внутри этой трубки частица дрейфует - движется с постоянной скоростью. Если длина трубки правильно подобрана, то она выйдет из нее в тот момент, когда ускоряющее напряжение продвинулось на одну длину волны. При этом напряжение на второй трубке тоже будет ускоряющим и составляет сотни тысяч вольт. Такой процесс многократно повторяется, и на каждом этапе частица получает дополнительную энергию. Чтобы движение частиц было синхронно с изменением поля, соответственно увеличению их скорости должна увеличиваться длина трубок. В конце концов скорость частицы достигнет скорости, очень близкой к скорости света, и предельная длина трубок будет постоянной.



Пространственные изменения поля налагают ограничение на временную структуру пучка. Ускоряющее поле изменяется в пределах сгустка частиц любой конечной протяженности. Следовательно, протяженность сгустка частиц должна быть мала по сравнению с длиной волны ускоряющего высокочастотного поля. Иначе частицы будут по-разному ускоряться в пределах сгустка. Слишком большой разброс энергии в пучке не только увеличивает трудности фокусировки пучка из-за наличия хроматической аберрации у магнитных линз, но и ограничивает возможности применения пучка в конкретных задачах. Разброс энергий может также приводить к размытию сгустка частиц пучка в аксиальном направлении. Рассмотрим сгусток нерелятивистских ионов, движущихся с начальной скоростью v0. Продольные электрические силы, обусловленные пространственным зарядом, ускоряют головную часть пучка и замедляют хвостовую. Синхронизируя соответствующим образом движение сгустка с высокочастотным полем, можно добиться большего ускорения хвостовой части сгустка, чем головной. Таким согласованием фаз ускоряющего напряжения и пучка можно осуществить фазировку пучка - скомпенсировать дефазирующее влияние пространственного заряда и разброса по энергии. В результате в некотором интервале значений центральной фазы сгустка наблюдаются центрирование и осцилляции частиц относительно определенной фазы устойчивого движения. Это явление, называемое автофазировкой, чрезвычайно важно для линейных ускорителей ионов и современных циклических ускорителей электронов и ионов. К сожалению, автофазировка достигается ценой снижения коэффициента заполнения ускорителя до значений, намного меньших единицы. В процессе ускорения практически у всех пучков обнаруживается тенденция к увеличению радиуса по двум причинам: из-за взаимного электростатического отталкивания частиц и из-за разброса поперечных (тепловых) скоростей. Первая тенденция ослабевает с увеличением скорости пучка, поскольку магнитное поле, создаваемое током пучка, сжимает пучок и в случае релятивистских пучков почти компенсирует дефокусирующее влияние пространственного заряда в радиальном направлении. Поэтому данный эффект весьма важен в случае ускорителей ионов, но почти несуществен для электронных ускорителей, в которых пучок инжектируется с релятивистскими скоростями. Второй эффект, связанный с эмиттансом пучка, важен для всех ускорителей. Удержать частицы вблизи оси можно с помощью квадрупольных магнитов. Правда, одиночный квадрупольный магнит, фокусируя частицы в одной из плоскостей, в другой их дефокусирует. Но здесь помогает принцип "сильной фокусировки", открытый Э.Курантом, С.Ливингстоном и Х.Снайдером: система двух квадрупольных магнитов, разделенных пролетным промежутком, с чередованием плоскостей фокусировки и дефокусировки в конечном счете обеспечивает фокусировку во всех плоскостях. Дрейфовые трубки все еще используются в протонных линейных ускорителях, где энергия пучка увеличивается от нескольких мегаэлектронвольт примерно до 100 МэВ. В первых электронных линейных ускорителях типа ускорителя на 1 ГэВ, сооруженного в Стэнфордском университете (США), тоже использовались дрейфовые трубки постоянной длины, поскольку пучок инжектировался при энергии порядка 1 МэВ. В более современных электронных линейных ускорителях, примером самых крупных из которых может служить ускоритель на 50 ГэВ длиной 3,2 км, сооруженный в Стэнфордском центре линейных ускорителей, используется принцип "серфинга электронов" на электромагнитной волне, что позволяет ускорять пучок с приращением энергии почти на 20 МэВ на одном метре ускоряющей системы. В этом ускорителе высокочастотная мощность на частоте около 3 ГГц генерируется большими электровакуумными приборами - клистронами. Протонный линейный ускоритель на самую высокую энергию был построен в Лосаламосской национальной лаборатории в шт. Нью-Мексико (США) в качестве "мезонной фабрики" для получения интенсивных пучков пионов и мюонов. Его медные резонаторы создают ускоряющее поле порядка 2 МэВ/м, благодаря чему он дает в импульсном пучке до 1 мА протонов с энергией 800 МэВ. Для ускорения не только протонов, но и тяжелых ионов были разработаны сверхпроводящие высокочастотные системы. Самый большой сверхпроводящий протонный линейный ускоритель служит инжектором ускорителя на встречных пучках ГЕРА в лаборатории Немецкого электронного синхротрона (ДЕЗИ) в Гамбурге (Германия).
ЦИКЛИЧЕСКИЕ УСКОРИТЕЛИ
Протонный циклотрон. Существует весьма элегантный и экономичный способ ускорения пучка путем многократного сообщения ему небольших порций энергии. Для этого с помощью сильного магнитного поля пучок заставляют двигаться по круговой орбите и много раз проходить один и тот же ускоряющей промежуток. Впервые этот способ был реализован в 1930 Э.Лоуренсом и С.Ливингстоном в изобретенном ими циклотроне. Как и в линейном ускорителе с дрейфовыми трубками, пучок экранируется от действия электрического поля в тот полупериод, когда оно действует замедляюще. Заряженная частица с массой m и зарядом q, движущаяся со скоростью v в магнитном поле H, направленном перпендикулярно ее скорости, описывает в этом поле окружность радиусом R = mv/qH. Поскольку ускорение приводит к увеличению скорости v, возрастает и радиус R. Таким образом, протоны и тяжелые ионы движутся по раскручивающейся спирали все возрастающего радиуса. При каждом обороте по орбите пучок проходит через зазор между дуантами - высоковольтными полыми D-образными электродами, где на него действует высокочастотное электрическое поле (рис. 3). Лоуренс сообразил, что время между прохождениями пучка через зазор в случае нерелятивистских частиц остается постоянным, поскольку возрастание их скорости компенсируется увеличением радиуса. На протяжении той части периода обращения, когда высокочастотное поле имеет неподходящую фазу, пучок находится вне зазора. Частота обращения дается выражением


где f - частота переменного напряжения в МГц, Н - напряженность магнитного поля в Тл, а mc2 - масса частицы в МэВ. Если величина H постоянна в той области, где происходит ускорение, то частота f, очевидно, не зависит от радиуса
(см. также ЛОУРЕНС Эрнест Орландо).



Для ускорения ионов до высоких энергий необходимо лишь, чтобы магнитное поле и частота высоковольтного напряжения отвечали условию резонанса; тогда частицы будут дважды за оборот проходить через зазор между дуантами в нужный момент времени. Для ускорения пучка до энергии 50 МэВ при ускоряющем напряжении 10 кэВ потребуется 2500 оборотов. Рабочая частота протонного циклотрона может составлять 20 МГц, так что время ускорения - порядка 1 мс. Как и в линейных ускорителях, частицы в процессе ускорения в циклотроне должны фокусироваться в поперечном направлении, иначе все они, кроме инжектированных со скоростями, параллельными полюсным наконечникам магнита, выпадут из цикла ускорения. В циклотроне возможность ускорения частиц с конечным разбросом по углам обеспечивается приданием магнитному полю особой конфигурации, при которой на частицы, выходящие из плоскости орбиты, действуют силы, возвращающие их в эту плоскость. К сожалению, по требованиям стабильности сгустка ускоряемых частиц фокусирующая компонента магнитного поля должна уменьшаться с увеличением радиуса. А это противоречит условию резонанса и приводит к эффектам, ограничивающим интенсивность пучка. Другой существенный фактор, снижающий возможности простого циклотрона, - релятивистский рост массы, как необходимое следствие увеличения энергии частиц:


В случае ускорения протонов синхронизм будет нарушаться из-за релятивистского прироста массы примерно при 10 МэВ. Один из способов поддержания синхронизма - модулировать частоту ускоряющего напряжения так, чтобы она уменьшалась по мере увеличения радиуса орбиты и увеличения скорости частиц. Частота должна изменяться по закону


Такой синхроциклотрон может ускорять протоны до энергии в несколько сот мегаэлектровольт. Например, если напряженность магнитного поля равна 2 Тл, то частота должна уменьшаться примерно от 32 МГц в момент инжекции до 19 МГц и менее при достижении частицами энергии 400 МэВ. Такое изменение частоты ускоряющего напряжения должно происходить на протяжении нескольких миллисекунд. После того как частицы достигают высшей энергии и выводятся из ускорителя, частота возвращается к своему исходному значению и в ускоритель вводится новый сгусток частиц. Но даже при оптимальной конструкции магнита и наилучших характеристиках системы подвода высокочастотной мощности возможности циклотронов ограничиваются практическими соображениями: для удержания на орбите ускоряемых частиц с высокой энергией нужны чрезвычайно большие магниты. Так, масса магнита циклотрона на 600 МэВ, сооруженного в лаборатории ТРИУМФ в Канаде, превышает 2000 т, и он потребляет электроэнергию порядка нескольких мегаватт. Стоимость же сооружения сихроциклотрона примерно порпорциональна кубу радиуса магнита. Поэтому для достижения более высоких энергий при практически приемлемых затратах требуются новые принципы ускорения.
Протонный синхротрон. Высокая стоимость циклических ускорителей связана с большим радиусом магнита. Но можно удерживать частицы на орбите с постоянным радиусом, увеличивая напряженность магнитного поля по мере увеличения их энергии. Линейный ускоритель инжектирует на эту орбиту пучок частиц сравнительно небольшой энергии. Поскольку удерживающее поле необходимо лишь в узкой области вблизи орбиты пучка, нет необходимости в магнитах, охватывающих всю площадь орбиты. Магниты расположены лишь вдоль кольцевой вакуумной камеры, что дает огромную экономию средств. Такой подход был реализован в протонном синхротроне. Первым ускорителем подобного типа был "Космотрон" на энергию 3 ГэВ (рис. 4), который начал работать в Брукхейвенской национальной лаборатории в 1952 в США; за ним вскоре последовал "Беватрон" на энергию 6 ГэВ, построенный в Лаборатории им. Лоуренса Калифорнийского университета в Беркли (США). Сооруженный специально для обнаружения антипротона, он работал на протяжении 39 лет, продемонстрировав долговечность и надежность ускорителей частиц.



В синхротронах первого поколения, построенных в США, Великобритании, Франции и СССР, фокусировка была слабой. Поэтому была велика амплитуда радиальных колебаний частиц в процессе их ускорения. Ширина вакуумных камер составляла примерно 30 см, и в этом все-таки большом объеме требовалось тщательно контролировать конфигурацию магнитного поля. В 1952 было сделано открытие, позволившее резко уменьшить колебания пучка, а следовательно, и размеры вакуумной камеры. Это был принцип сильной, или жесткой, фокусировки. В современных протонных синхротронах со сверхпроводящими квадрупольными магнитами, расположенными по схеме сильной фокусировки, вакуумная камера может быть меньше 10 см в поперечнике, что приводит к значительному уменьшению размеров, стоимости и потребляемой мощности фокусирующих и отклоняющих магнитов. Первым синхротроном, основанным на этом принципе, был "Синхротрон с переменным градиентом" на энергию 30 ГэВ в Брукхейвене. Аналогичная установка была построена в лаборатории Европейской организации ядерных исследований (ЦЕРН) в Женеве. В середине 1990-х годов оба ускорителя все еще находились в эксплуатации. Апертура "Синхротрона с переменным градиентом" была примерно в 25 раз меньше, чем у "Космотрона". Потребляемая магнитом мощность при энергии 30 ГэВ примерно соответствовала мощности, потребляемой магнитом "Космотрона" при 3 ГэВ. "Синхротрон с переменным градиентом" ускорял 6Ч1013 протонов в импульсе, что соответствовало самой высокой интенсивности среди установок этого класса. Фокусировка в этом ускорителе осуществлялась теми же магнитами, что и отклоняли пучок; это достигалось приданием полюсам магнита формы, показанной на рис. 5. В современных ускорителях для отклонения и фокусировки пучка, как правило, используются отдельные магниты.




ЛАБОРАТОРИЯ ИМ. Э. ФЕРМИ близ Батавии (США). Длина окружности "Главного кольца" ускорителя составляет 6,3 км. Кольцо расположено на глубине 9 м под окружностью в центре снимка.


В середине 1990-х годов самым крупным протонным синхротроном являлся "Теватрон" Национальной ускорительной лаборатории им. Э. Ферми в Батавии (США). Как подсказывает само название, "Теватрон" ускоряет сгустки протонов в кольце диаметром 2 км до энергии порядка 1 ТэВ. Ускорение протонов осуществляется целой системой ускорителей, начиная с генератора Кокрофта - Уолтона в качестве инжектора, из которого отрицательные ионы водорода с энергией 750 кэВ вводятся в линейный ускоритель на энергию 400 МэВ. Затем пучок линейного ускорителя пропускается через углеродную пленку для обдирки электронов и инжектируется в промежуточный синхротрон - бустер - диаметром 150 м. В бустере протоны совершают примерно 20 000 оборотов и приобретают энергию 8 ГэВ. Обычно бустер выполняет 12 быстро следующих друг за другом рабочих циклов, в результате которых в "Главное кольцо" - еще один протонный синхротрон с протяженностью кольца 6,3 км - инжектируется 12 сгустков протонов. "Главное кольцо", в котором протоны ускоряются до энергии 150 ГэВ, состоит из 1000 обычных магнитов с медными обмотками, отклоняющих и фокусирующих протоны. Непосредственно под "Главным кольцом" расположен состоящий из 1000 сверхпроводящих магнитов оконечный синхротрон "Теватрон". Пучок может выводиться по многим каналам на расстояние 1,5-3 км для проведения исследований во внешних экспериментальных залах. Для удержания на орбите пучков с более высокими энергиями требуются более сильные отклоняющие и фокусирующие магниты. Предназначенные для субъядерной "микроскопии" протонные синхротроны на энергии больше 1 ТэВ требуют тысяч сверхпроводящих и фокусирующих магнитов длиной 5-15 м с апертурой шириной в несколько сантиметров, обеспечивающих исключительно высокую точность полей и стабильность их во времени. Основными факторами, сдерживающими создание протонных синхротронов на более высокие энергии, являются большая стоимость и сложность управления, связанные с их огромными размерами.
УСКОРИТЕЛИ СО ВСТРЕЧНЫМИ ПУЧКАМИ
Циклические коллайдеры. Далеко не вся энергия ускоренной частицы идет на осуществление нужной реакции. Значительная ее часть бесполезно теряется в виде отдачи, претерпеваемой частицей мишени в силу закона сохранения импульса. Если налетающая частица имеет энергию Е, а масса частицы покоящейся мишени равна М, то полезная энергия составляет


Таким образом, в экспериментах с покоящейся мишенью на "Теватроне" полезная энергия составляет всего лишь 43 ГэВ. Стремление использовать в исследованиях частиц как можно более высокие энергии привело к созданию в ЦЕРНе и Лаборатории им. Э.Ферми протон-антипротонных коллайдеров, а также большого числа установок в разных странах со встречными электрон-позитронными пучками. В первом протонном коллайдере соударения протонов и антипротонов с энергиями 26 ГэВ происходили в кольце с длиной окружности 1,6 км (рис. 6). За несколько дней удавалось накопить пучки с током до 50 А.



В настоящее время коллайдером с самой высокой энергией является "Теватрон", на котором проводятся эксперименты при соударении пучка протонов, имеющих энергию 1 ТэВ, со встречным пучком антипротонов той же энергии. Для таких экспериментов необходимы антипротоны, которые можно получить, бомбардируя пучком протонов высокой энергии из "Главного кольца" металлическую мишень. Рождающиеся в этих соударениях антипротоны накапливают в отдельном кольце при энергии 8 ГэВ. Когда накоплено достаточно много антипротонов, их инжектируют в "Главное кольцо", ускоряют до 150 ГэВ и далее инжектируют в "Теватрон". Здесь протоны и антипротоны одновременно ускоряют до полной энергии, а затем осуществляют их соударения. Суммарный импульс сталкивающихся частиц равен нулю, так что вся энергия 2Е оказывается полезной. В случае "Теватрона" она достигает почти 2 ТэВ. Наибольшая энергия среди электрон-позитронных коллайдеров была достигнута на "Большом электрон-позитронном накопительном кольце" в ЦЕРНе, где энергия сталкивающихся пучков на первом этапе составляла 50 ГэВ на пучок, а затем была увеличена до 100 ГэВ на пучок. В ДЕЗИ сооружен коллайдер ГЕРА, в котором происходят соударения электронов с протонами. Этот огромный выигрыш в энергии достигается ценой значительного уменьшения вероятности столкновений между частицами встречных пучков низкой плотности. Частота столкновений определяется светимостью, т.е. числом столкновений в секунду, сопровождающихся реакцией данного типа, имеющей определенное сечение. Светимость линейно зависит от энергии и тока пучка и обратно пропорциональна его радиусу. Энергию пучка коллайдера выбирают в соответствии с энергетическим масштабом исследуемых физических процессов. Для обеспечения наибольшей светимости необходимо добиться максимально возможной плотности пучков в месте их встречи. Поэтому главной технической задачей при проектировании коллайдеров является фокусировка пучков в месте их встречи в пятно очень малых размеров и увеличение тока пучка. Для достижения нужной светимости могут потребоваться токи более 1 А. Еще одна исключительно сложная техническая проблема связана с необходимостью обеспечивать в камере коллайдера сверхвысокий вакуум. Поскольку столкновения между частицами пучков происходят сравнительно редко, соударения с молекулами остаточного газа могут существенно ослаблять пучки, уменьшая вероятность изучаемых взаимодействий. Кроме того, рассеяние пучков на остаточном газе дает нежелательный фон в детекторе, способный замаскировать изучаемый физический процесс. Вакуум в камере коллайдера должен лежать в пределах 10-9 - 10-7 Па (10-11 - 10-9 мм рт. ст.) в зависимости от светимости. При более низких энергиях можно ускорять более интенсивные пучки электронов, что дает возможность исследовать редкие распады В- и К-мезонов, обусловленные электрослабыми взаимодействиями. Ряд таких установок, иногда называемых "фабриками ароматов", сооружается в настоящее время в США, Японии и Италии. Такие установки имеют два накопительных кольца - для электронов и для позитронов, пересекающихся в одной или двух точках, - областях взаимодействия. В каждом кольце содержится много сгустков частиц при полном токе более 1 А. Энергии пучков выбираются с таким расчетом, чтобы полезная энергия соответствовала резонансу, который распадается на изучаемые короткоживущие частицы - В- или К-мезоны. В основе конструкции этих установок лежат электронный синхротрон и накопительные кольца.
Линейные коллайдеры. Энергии циклических электрон-позитронных коллайдеров ограничиваются интенсивным синхротронным излучением, которое испускают пучки ускоренных частиц (см. ниже). Этого недостатка нет у линейных коллайдеров, в которых синхротронное излучение не сказывается на процессе ускорения. Линейный коллайдер состоит их двух линейных ускорителей на высокие энергии, высокоинтенсивные пучки которых - электронный и позитронный - направлены навстречу друг другу. Пучки встречаются и соударяются только один раз, после чего отводятся в поглотители. Первым линейным коллайдером является "Стэнфордский линейный коллайдер", использующий Стэнфордский линейный ускоритель длиной 3,2 км и работающий при энергии 50 ГэВ. В системе этого коллайдера сгустки электронов и позитронов ускоряются в одном и том же линейном ускорителе и разделяются по достижении пучками полной энергии. Затем электронные и позитронные сгустки транспортируются по отдельным дугам, форма которых напоминает трубки медицинского стетоскопа, и фокусируются до диаметра около 2 мкм в области взаимодействия.
Новые технологии. Поиски более экономичных методов ускорения привели к созданию новых ускорительных систем и высокочастотных генераторов большой мощности, работающих в диапазоне частот от 10 до 35 ГГц. Светимость электрон-позитронных коллайдеров должна быть исключительно высокой, поскольку сечение процессов убывает как квадрат энергии частиц. Соответственно этому и плотности пучков должны быть чрезвычайно высокими. В линейном коллайдере на энергию порядка 1 ТэВ размеры пучков могут достигать 10 нм, что намного меньше размеров пучка в "Стэнфордском линейном коллайдере" (2 мкм). При столь малых размерах пучков для точного согласования фокусирующих элементов необходимы очень мощные стабильные магниты со сложными электронными автоматическими регуляторами. При прохождении электронного и позитронного пучков друг через друга их электрическое взаимодействие нейтрализуется, а магнитное усиливается. В результате магнитные поля могут достигать 10 000 Тл. Такие гигантские поля способны сильно деформировать пучки и приводить к большому энергетическому разбросу вследствие генерации синхротронного излучения. Эти эффекты наряду с экономическими соображениями, связанными с сооружением все более и более протяженных машин, будут ставить предел энергии, достижимой на электронно-позитронных коллайдерах.
ЭЛЕКТРОННЫЕ НАКОПИТЕЛИ
Электронные синхротроны основаны на тех же принципах, что и протонные. Однако благодаря одной важной особенности они проще в техническом отношении. Малость массы электрона позволяет инжектировать пучок при скоростях, близких к скорости света. Поэтому дальнейшее увеличение энергии не связано с заметным увеличением скорости, и электронные синхротроны могут работать при фиксированной частоте ускоряющего напряжения, если пучок инжектируется с энергией около 10 МэВ. Однако это преимущество сводится на нет другим следствием малости электронной массы. Поскольку электрон движется по круговой орбите, он движется с ускорением (центростремительным), а потому испускает фотоны - излучение, которое называется синхротронным. Мощность Р синхротронного излучения пропорциональна четвертой степени энергии пучка Е и току I, а также обратно пропорциональна радиусу кольца R, так что она пропорциональна величине (E/m)4IR -1. Эта энергия, теряемая при каждом обороте электронного пучка по орбите, должна компенсироваться высокочастотным напряжением, подаваемым на ускоряющие промежутки. В рассчитанных на большие интенсивности "фабриках аромата" такие потери мощности могут достигать десятков мегаватт. Циклические ускорители типа электронных синхротронов могут использоваться и как накопители больших циркулирующих токов с постоянной высокой энергией. Такие накопители имеют два основных применения: 1) в исследованиях ядра и элементарных частиц методом встречных пучков, о чем говорилось выше, и 2) как источники синхротронного излучения, используемые в атомной физике, материаловедении, химии, биологии и медицине. Средняя энергия фотонов синхротронного излучения пропорциональна (E/m)3R-1. Таким образом, электроны с энергией порядка 1 ГэВ, циркулирующие в накопителе, испускают интенсивное синхротронное излучение в ультрафиолетовом и рентгеновском диапазонах. Большая часть фотонов испускается в пределах узкого вертикального угла порядка m/E. Поскольку радиус электронных пучков в современных накопителях на энергию порядка 1 ГэВ измеряется десятками микрометров, пучки испускаемого ими рентгеновского излучения характеризуются высокой яркостью, а потому могут служить мощным средством исследования структуры вещества. Излучение испускается по касательной к криволинейной траектории электронов. Следовательно, каждый отклоняющий магнит электронного накопительного кольца, когда через него проходит сгусток электронов, создает разворачивающийся "прожекторный луч" излучения. Оно выводится по длинным вакуумным каналам, касательным к основной вакуумной камере накопителя. Расположенные вдоль этих каналов щели и коллиматоры формируют узкие пучки, из которых далее с помощью монохроматоров выделяется нужный диапазон энергий рентгеновского излучения. Первыми источниками синхротронного излучения были установки, первоначально сооруженные для решения задач физики высоких энергий. Примером может служить Стэнфордский позитрон-электронный накопитель на энергию 3 ГэВ в Стэнфордской лаборатории синхротронного излучения. На этой установке в свое время были открыты "очарованные" мезоны. Первые источники синхротронного излучения не обладали той гибкостью, которая позволяла бы им удовлетворять разнообразным нуждам сотен пользователей. Быстрый рост потребности в синхротронном излучении с высоким потоком и большой интенсивностью пучка вызвал к жизни источники второго поколения, спроектированные с учетом потребностей всех возможных пользователей. В частности, были выбраны системы магнитов, уменьшающие эмиттанс электронного пучка. Малый эмиттанс означает меньшие размеры пучка и, следовательно, более высокую яркость источника излучения. Типичными представителями этого поколения явились накопители в Брукхейвене, служившие источниками рентгеновского излучения и излучения вакуумной ультрафиолетовой области спектра. Яркость излучения можно также увеличить, заставив пучок двигаться по синусоидальной траектории в периодической магнитной структуре и затем объединяя излучение, возникающее при каждом изгибе. Ондуляторы - магнитные структуры, обеспечивающие подобное движение, представляют собой ряд магнитных диполей, отклоняющих пучок на небольшой угол, расположенных по прямой на оси пучка. Яркость излучения такого ондулятора может в сотни раз превышать яркость излучения, возникающего в отклоняющих магнитах. В середине 1980-х годов начали создаваться источники синхротронного излучения третьего поколения с большим числом таких ондуляторов. Среди первых источников третьего поколения можно отметить "Усовершенствованный источник света" с энергией 1,5 ГэВ в Беркли, генерирующий мягкое рентгеновское излучение, а также "Усовершенствованный источник фотонов" с энергией 6 ГэВ в Аргоннской национальной лаборатории (США) и синхротрон на энергию 6 ГэВ в Европейском центре синхротронного излучения в Гренобле (Франция), которые используются как источники жесткого рентгеновского излучения. После успешного сооружения этих установок был создан ряд источников синхротронного излучения и в других местах. Новый шаг в направлении большей яркости в диапазоне от инфракрасного до жесткого рентгеновского излучения связан с использованием в системе отклоняющих магнитов "теплых" магнитных диполей с напряженностью магнитного поля около 1,5 Тл и гораздо более коротких сверхпроводящих магнитных диполей с полем в несколько тесла. Такой подход реализуется в новом источнике синхротронного излучения, создаваемом в институте П. Шеррера в Швейцарии, и при модернизации источника в Беркли. Применение синхротронного излучения в научных исследованиях получило большой размах и продолжает расширяться. Исключительная яркость таких пучков рентгеновского излучения позволяет создать новое поколение рентгеновских микроскопов для изучения биологических систем в их нормальной водной среде. Открывается возможность быстрого анализа структуры вирусов и белков для разработки новых фармацевтических препаратов с узкой направленностью действия на болезнетворные факторы и минимальными побочными эффектами. Яркие пучки рентгеновского излучения могут служить мощными микрозондами для выявления самых ничтожных количеств примесей и загрязнений. Они дают возможность очень быстро анализировать экологические пробы при исследовании путей загрязнения окружающей среды. Их можно также использовать для оценки степени чистоты больших кремниевых пластин перед дорогостоящим процессом изготовления очень сложных интегральных схем, и они открывают новые перспективы для метода литографии, позволяя в принципе создавать интегральные схемы с элементами меньше 100 нм.
УСКОРИТЕЛИ В МЕДИЦИНЕ
Ускорители играют важную практическую роль в медицинской терапии и диагностике. Многие больничные учреждения во всем мире сегодня имеют в своем распоряжении небольшие электронные линейные ускорители, генерирующие интенсивное рентгеновское излучение, применяемое для терапии опухолей. В меньшей мере используются циклотроны или синхротроны, генерирующие протонные пучки. Преимущество протонов в терапии опухолей перед рентгеновским излучением состоит в более локализованном энерговыделении. Поэтому протонная терапия особенно эффективна при лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканей должно быть по возможности минимальным. См. также

1.1 . Физические основы коллайдеров

Коллайдеры (ускорители со встречными пучками) - это установки, в которых осуществляется столкновение встречных ускоренных пучков заряженных частиц.
В обычных ускорителях пучок частиц, ускоренных до высокой энергии, взаимодействует с частицами неподвижной мишени. При этом вследствие закона сохранения полного импульса большая часть энергии налетающих частиц расходуется на сохранение движения центра масс системы, т.е. на сообщение кинетической энергии частицам - продуктам распада. Лишь небольшая ее часть определяет полезную и эффективную энергию столкновения - энергию взаимодействия частиц в системе их центра масс (центре инерции), которая может расходоваться, например, на рождение новых частиц.
При неподвижной мишени частица мишени с массой покоя m 0 в лабораторной системе отсчета имеет в центре масс энергию покоя E 0 = m 0 c 2 , а другая, налетающая частица, обладающая той же массой покоя m 0, движется в этой системе с релятивистской скоростью и обладает несравнимо большей энергией, чем покоящаяся частица (Е >> E 0). Энергия в системе центра масс (центра инерции) определяется формулой . Чем больше Е, тем меньшая ее доля составляет эффективную энергию взаимодействия частиц.
Если же сталкиваются частицы, движущиеся с равными по величине, но противоположно направленными импульсами, то их суммарный импульс равен нулю. В этом случае лабораторная система отсчета совпадает с системой центра масс частиц и эффективная энергия столкновения равна сумме энергий сталкивающихся частиц. Для легких частиц с одинаковыми массами и энергией Е, Е цм = 2E эта кинетическая энергия может быть полностью использована на взаимодействие. .
В системе центра масс частицы движутся навстречу друг другу с одинаковыми импульсами и энергиями E, суммарный импульс продуктов реакции равен нулю. Вся начальная энергия расходуется на интересующее нас рождение частиц, на проникновение в мелкомасштабную структуру материи.
При столкновении частиц их энергия передается мельчайшим "капелькам" вещества, которые "взрываются", и мы наблюдаем разлет образовавшихся частиц. Исследователи узнают об устройстве вещества на мелкомасштабном уровне по специфическим распределениям этих частиц или по родившимся новым частицам (большинство из которых живут очень недолго) .
Преимущество процесса взаимодействия на встречных пучках особенно велико для легких частиц - электронов, позитронов (из-за их малой энергии покоя). Ускорители с неподвижной мишенью и ускорители на встречных пучках считаются эквивалентными, если при одних и тех же сталкивающихся частицах они имеют одинаковые полезные энергии, затрачиваемые непосредственно на реакцию взаимодействия в центре масс. Формула, связывающая кинетические энергии частиц в эквивалентных ускорителях с неподвижной мишенью Е н и на встречных пучках Е цм. в ультрарелятивистском случае имеет вид : Е н = Е 2 цм. /2Е 0 . Используя это соотношение, можно подсчитать энергию для ускорителя с неподвижной мишенью, эквивалентного коллайдеру.
Расчет показывает, что для получения кинетической энергии эквивалентной энергии БЭПК (LEP), равной Е цм = 0,209 ТэВ без использования встречных пучков энергия ускорителя должна была бы составлять E н = 4,274×10 4 ТэВ, а Е н.. / Е цм =2·10 5). Те же величины для адронного коллайдера LHC составляют E н = 1,044·10 5 ТэВ и Е н.. / Е цм =7500 (LEP и LHC - самые большие из построенных электрон-позитронных и адронных кольцевых коллайдеров) Из приведенных результатов расчета видно, что только используя схему встречных пучков, мы имеем возможность получать очень высокие эффективные энергии.
При использовании меньших энергий можно было бы обойтись и традиционными ускорителями, однако реализация принципа столкновения частиц позволяет сделать установку существенно более компактной.

1.2 . Сравнение кольцевых и линейных коллайдеров. Синхротронное излучение

Как видно из Табл. 1а, за исключением коллайдера SLAC (СЛК, SLC), все построенные коллайдеры были кольцевыми. Кольцевые коллайдеры практически всегда более компактны, чем линейные. Необходимо отметить, однако, что использование кольцевых траекторий для ускорения легких частиц ограничивается сильным синхротронным излучением, возникающим при их вращении.
Энергия синхротронного излучения U для релятивистской частицы зависит от её массы m 0 энергии Е, радиуса траектории ρ и определяется формулой :

(1.1)

Из-за большой разницы между массой покоя электронов и протонов при одинаковых энергиях и радиусах вращения мощность синхротронного излучения электронного пучка будет в 1013 раз больше чем протонного.
В коллайдере БЭПК (LEP), где вращающийся пучок характеризовался следующими параметрами:
Е ≈ 100 ГэВ, ρ = 4 км, В = 0,75 Тл, потери энергии на один оборот составляли 2 ГэВ. В случае протонных коллайдеров коэффициент 8,85×10 -5 в формуле (1.1) должен быть заменен на 7,8×10 -18 .
Из-за больших синхротронных потерь, электрон - позитронные кольцевые коллайдеры на энергию в центре масс боٰльшую 208 БэВ не создавались. Тем не менее в работе рассматривался проект электрон - позитронного коллайдера, расположенного в тоннеле того же диаметра, что и коллайдер БЭПК (длина кольца 22,8 км). При светимости 10 32 см -2 с -1 энергия каждого пучка должна была бы составить 400 ГэВ. Чтобы покрыть потери на синхротронное излучение пришлось бы затратить 100 ГВ ВЧ мощности.
В настоящее время при использовании электронов (позитронов) перспективными в ТэВ-м диапазоне в первую очередь считаются линейные коллайдеры. В тоже время разрабатываются кольцевые мюонные коллайдеры, где сталкиваются элементарные частицы с массой значительно превышающей массу электронов. Предполагается, что первые мюонные коллайдеры будут обладать энергией в центре масс 0,1 - 3 ТэВ и светимостью (1 - 5)×10 34 см -2 с -1 .

1.3 . Основные параметры коллайдеров

Первая основная характеристика коллайдера - энергия его пучков - выбирается исходя из задач физики элементарных частиц, которые предполагается решать при его создании. Обычно круг этих задач оказывается весьма широким. В Табл.2 -1 приведены данные о некоторых экспериментах, которые проводятся или будут проводиться в ряде коллайдеров высокой энергии. Краткие сведения о частицах, сталкиваемых в коллайдерах и о задачах, решаемых в физике элементарных частиц, будут рассмотрены в следующем разделе.
Светимость коллайдера является его второй важнейшей характеристикой. С увеличением светимости увеличивается число сталкивающихся частиц. Геометрическая светимость зависит от частоты (f) cтолкновений сгустков, числа частиц в сгустке каждого пучка (n 1 и n 2) и от поперечного сечения сгустка (S). Светимость (L) определяется формулой :

При столкновении частиц между ними может произойти взаимодействие, а может и не произойти. Имеется возможность определить только вероятность того или иного исхода столкновения. Вероятность взаимодействия определяется величиной поперечного эффективного сечения взаимодействия σ, которое имеет размерность площади (см 2) и определяется формулой:

σ = N/L, (2.1)

где N - число частиц, которые испытали взаимодействие в единицу времени (неупругие столкновения). Величина σ обычно выражается в миллибарнах (1 мбарн = 10 -27 см 2). В работе и в ряде других работ приводится формула, определяющая величину светимости, где учитываются эмиттанс пучка, гауссово распределение электронов в сгустке, учитывается также величина полного угла столкновения сгустков.
Часто используют понятие интегральной светимости (или интеграл светимости), то есть светимость, умноженная на время работы ускорителя в течение «стандартного ускорительного года. Длительность одного стандартного года обычно принимают равным 10 6 - 10 7 секунд, что примерно равно четырем месяцам. Интегральную светимость обычно выражают в обратных пикобарнах (пбарн -1) или обратных фемтобарнах (фбарн -1).
Для того чтобы узнать, как часто будет происходить какой-то процесс на конкретном коллайдере, надо умножить сечение процесса на светимость коллайдера (N = σL). Из-за неидеальной эффективности детектора количество реально зарегистрированных событий будет, конечно, меньше.
Не всегда стремятся к получению максимально возможной светимости. Если в каждом сгустке адронного коллайдера будет очень много частиц, то при их столкновении одновременно будет происходить несколько независимых протон-протонных столкновений. Детектор будет фиксировать наложенные друг на друга следы сразу всех этих столкновений, что затруднит анализ процесса взаимодействия.
Поскольку сечение процессов убывает как квадрат энергии частиц, светимость коллайдеров на большую энергию должна быть исключительно высокой. Значения светимости некоторых построенных коллайдеров приведены выше в Табл.1-В и 2-В

Таблица № 2.1. Исследования, проводимые на некоторых коллайдерах

Наименование
коллайдера
Энергия пучков
коллайдера,
ГэВ
Светимость
коллайдера
10 30 см -2 с -1
Некоторые исследования, проводимые на коллайдере
KEKB е − : 8
е + :3,5
16270
PEP-II е − : 7-12
е + : 2,5- 4
10025 Получение тяжелых кварков и тяжелых лептонов. В-фабрика - получение В мезонов, исследование нарушения симметрии
SLC

е + е − : 91

6 ИсследованиеZ 0 бозона

е + е − : 100-104,6

24 на Z 0
100 при > 90 ГэВ
Исследование бозонов слабого взаимодействия Z 0 и W ±
171 Поиск бозонов Хиггса
RHIC pp,
Au-Au,
Cu-Cu,
d-Au:100/n
10; 0,0015; 0,02; 0,07

Большой адронный коллайдер
БАК (LHC)

pp: 3500
(план 7000)
Pb-Pb: 1380/n
(план 2760)
10000 (план) Поиск бозонов Хиггса.
Изучение кварк-глюонной плазмы
Международный линейный коллайдер, ILC
Компактный линейный коллайдер,CLIC Исследование бозонов Хиггса

Проектное значение введенного в 2009 г в эксплуатацию Большого адронного коллайдера БАК (LHC) в ЦЕРН определено в L =10 34 см -2 с -1 . Если предположить что поперечное эффективное сечение взаимодействия в центре масс в коллайдере БАК составляет σ = 80 мб , то при работе БАК на энергии в центре масс 14 ГэВ величина N = 8×10 8 с - 1 .
Предполагается, что продолжительность работы коллайдера составит примерно 10 7 с в год, а его интегральная светимость за год составит около 10 41 см -2 . При σ = 80 мб в год может происходить 8×10 15 событий. В большинстве из этих событий будет рождаться несколько тысяч частиц. Никакие электронные и компьютерные системы не в состоянии обработать такой поток информации. Столь высокая светимость, однако, необходима при исследовании крайне редких событий с малым поперечным сечением, которые характерны для новой физики. При хорошей электронике, позволяющей осуществлять надежный отбор событий с заранее известными признаками, можно получать информацию примерно до ста событий в год в процессе с очень низким сечением σ = 1 фб. Именно для работы с такими событиями и нужна высокая светимость коллайдера .
К третьей основной характеристике коллайдера можно отнести тип сталкивающихся частиц. Из приведенных выше Табл.1-В и Табл.2-В видно, что построены и используются как электрон - позитронные, протон-антипротонные коллайдеры, так и электрон-протонные коллайдеры. Следует отметить, что применение античастиц не является обязательным, так как разница в знаке заряда мало влияет на результаты физических исследований. Отличие в знаке заряда больше влияет на конструкцию коллайдера В кольцевых коллайдерах использование частиц и античастиц позволяет осуществлять их движение по одному каналу (трубе), как это делается, например, в коллайдере Теватрон. В тоже время в коллайдере БАК сталкиваются только протоны или ионы свинца одного знака. Для этого, однако, потребовалась проводка сталкивающихся частиц по двум разным каналам.
Электрон-позитронные линейные коллайдеры имеют определенные преимущества перед адронными коллайдерами в части анализа результатов, получаемых в экспериментах. В тоже время, из-за отсутствия накопительных колец, в них труднее получать высокую светимость.
Сравнение характера столкновений в электрон-позитронных и адронных коллайдерах рассматриваются в следующих разделах.

1.4 . Краткие сведения о физике элементарных частиц

В настоящее время основу физики элементарных частиц представляет «Стандартная модель» - квантово-механическая теория локальных полей. В ней рассматриваются поля каждого типа элементарных частиц (кроме гравитационного поля). Колебания таких полей переносят энергию и импульс с одного места пространства в другое. Согласно квантовой механике волны собираются в пакеты, или кванты, которые наблюдаются в лаборатории в виде элементарных частиц.
В «Стандартной модели» (Табл.3.1) фермионы это - элементарные частицы, из которых складывается вещество Они представлены двумя видами полей: полями лептонов (лептон от греческого «leptos» - легкий) и полями кварков («quark» - фундаментальная частица в стандартной модели). Фермионы разбиты на три поколения. Каждый член следующего поколения имеет массу большую, чем соответствующая частица предыдущего. Все обычные атомы содержат частицы первого поколения. Второе и третье поколения заряженных частиц не присутствуют в обычной материи и наблюдаются только в условиях очень высоких энергий.


Таблица № 3.1. Стандартная модель

Квантами лептонных полей являются: электроны, более тяжелые частицы - мюоны, таоны, и электрически нейтральные частицы, известные как нейтрино.
Квантами полей кварков являются: верхний, нижний, очаровательный, странный, истинный и прелестный кварки. Некоторые из кварков связаны вместе внутри протонов и нейтронов, составляющих ядра обычных атомов. Составные части ядра: протоны и нейтроны тоже являются фермионами.
Силы взаимодействия между частицами, обусловлены процессами обмена фотонами, W + , W - и Z 0 частицами, а также восемью типами глюонов (gluon), Переносчики взаимодействий получили название калибровочных бозонов .
Электромагнитное взаимодействие имеет место между заряженными частицами. Под действием электромагнитных сил не происходит изменения частиц, они только притягиваются или отталкиваются. Переносчиком взаимодействия являются фотоны. Электромагнитное взаимодействие удерживает электроны в атомах и связывает атомы в молекулах и кристаллах.
Сильному взаимодействию подвержены кварки. Оно связывает их вместе, образуя протоны, нейтроны и другие комбинированные частицы. Сильное взаимодействие влияет на связь между протонами и нейтронами в атоме. Переносчиками этого возбуждения являются глюоны. Это самое сильное взаимодействие в природе. Оно является преобладающим видом взаимодействия в ядерной физике высоких энергий. Взаимодействие ограничивается весьма короткими расстояниями.
Слабое взаимодействие имеет место между кварками и лептонами. Наиболее известный эффект слабого взаимодействия - видоизменение кварков, которое в свою. очередь, заставляет нейтрон распадаться на протон, электрон и анти-нейтрино.
Переносчиками возбуждения являются W + , W - и Z 0 бозоны. Слабое взаимодействие, проявляется при бета-распаде радиоактивных ядер, имеет очень малую дальность.
Четвертой силой взаимодействия является сила гравитации. В квантовой теории предполагается, что переносчиком гравитационного взаимодействия является гравитон. Гравитон - частица, не имеющая массы. Она обладает спином, равным 2.
Гравитационное взаимодействие универсально. В нем участвуют все частицы. Это взаимодействие является самым слабым. Оно связывает части земного шара, объединяет Солнце и планеты в Солнечную систему, связывает звезды в галактиках, определяет крупномасштабные события Вселенной .
. Гравитационное поле описывалось Общей теорией относительности Эйнштейна. В первой половине ХХ века предпринимались многочисленные попытки создания единой теории фундаментальных взаимодействий, включающей гравитацию. Однако ни одной полностью удовлетворительной модели пока предложено не было. Это, в частности, связано с тем, что общая теория относительности и теории, описывающие другие взаимодействия различны по своей сути. Тяготение описывается искривлением пространства-времени, и в этом смысле гравитационное поле нематериально, в то время как другие поля являются материей . Их объединения пока не удалось достичь также из-за трудностей создания квантовой теории гравитации. В настоящее время для объединения фундаментальных взаимодействий используются различные подходы: теория струн , петлевая квантовая гравитация , а также М-теория .
Стандартная Модель предполагает существование еще одного поля, которое практически неотделимо от пустого пространства и не совпадает с гравитационным полем. Его принято называть полем Хиггса. Считается, что все пространство заполнено этим полем и что все фундаментальные частицы (лептоны, кварки и калибровочные бозоны) приобретают массу в результате взаимодействия с полем Хиггса.
Квантами этого поля являются бозоны Хиггса. Бозон Хиггса теоретически предсказан в 1964 году шотландским физиком П. Хиггсом .
Бозон Хиггса — последняя до сих пор не найденная частица «Стандартной модели».
Эта частица так важна, что нобелевский лауреат Леон Ледерман назвал её «частицей-бога» . Предполагается наличие четырех или даже пяти бозонов Хиггса, которые являются скалярными частицами, т.е. имеют нулевой спин. О пяти разновидностей бозона Хиггса с разными зарядами (три нейтральных, один положительный и один отрицательный) сообщается в работе .
Долгое время предполагалось, что верхняя граница массы бозона Хиггса менее 1 ТэВ.
Однако в 2004 г. на коллайдере Теватрон при обработке данных эксперимента, полученных по определению массы t - кварка, значение верхней границы массы бозона Хиггса было ограничено 251 ГэВ.
Исследования по обнаружению бозона Хиггса проводились и продолжаются на ряде других коллайдерах. Широкий цикл исследований по нахождению бозона Хиггса был осуществлен на коллайдере LEP c энергией в центре масс 208 ГэВ, но успехом не увенчался.
Ожидается, что экспериментальное подтверждение наличия бозонов Хиггса и уточнение их
характеристик будет выполнено на коллайдере БАК.
Как видно из Табл. 2.1 на нескольких коллайдерах ведутся исследования состояния материи, называемой кварк-глюонной плазмой, где цветные кварки и глюоны, как свободные частицы, образуют непрерывную среду, называемую хромоплазмой. Проводимость хромоплазмы аналогична электропроводимости, возникающей в электрон-ионной плазме . По современным представлениям кварк-глюонная плазма образуется при высоких температурах и/или больших плотностях адронной материи. Предполагают, что в естественных условиях эта плазма существовала в первые 10 -5 с после Большого взрыва. Эти условия могут присутствовать в центре нейтронных звезд. Переход в состояние кварк-глюконной плазмы может происходить при температуре, соответствующей кинетической энергии ~200 МэВ.
Первые экспериментальные результаты, касающиеся кварк-глюонной плазмы были получены в в 1990 г. в ЦЕРН на Супер протонном синхронтроне, СПС (SPS). Затем в 2000 г., также в ЦЕРН было объявлено об открытия этого «нового состояния материи». Дальнейшие исследования проводились на коллайдере RHIC. Считается, что для образования кварк-глюонной плазмы необходима энергия ~3,5 ТэВ. В 2010 г было сообщено, что по предварительным данным температура плазмы составила 3,5 -4 триллиона градусов Цельсия. Работы велись при столкновении в RHIC ионов свинца и золота. Коллайдер работал при энергии в центре масс ~ 33 ТэВ .
В ноябре 2010 г работа с ионами свинца и получением кварк-глюонной плазмы началиcь на Большом адроном коллайдере LHC. В течение первой недели была получена кварк-глюонная плазма с температурой в десятки триллионов градусов .
Одним из важных направлений физики элементарных частиц является изучение вопросов симметрии. Так на коллайдерах PEP II и KEK-B, которые, в частности являются фабриками В - мезонов исследуются вопросы нарушения СP cимметрии (С - зарядная симметрия, трансформация частицы в античастицу). P - пространственная симметрия, зеркальное отображение системы . Сначала физики полагали, что при проведении симметричного преобразования любого взаимодействия между частицами результат будет неизменен - симметрия сохранится. Однако экспериментальные исследования показали, что при слабых взаимодействиях происходит нарушение как Р-, так и С- симметрии . Изучение вопросов нарушения симметрии на коллайдерах PEP II и KEK-B эффективно благодаря их высокой светимости.
В ближайшее время изучение вопросов симметрии будет проводиться при очень высоких энергиях коллайдера БАК, что позволит измерить гораздо большее число распадов В-мезонов с нарушением СР симметрии, чем в предыдущих экспериментах. Стандартная модель пройдет еще одну доскональную проверку, и появится объяснение того, почему природа предпочла вещество антивеществу .
Основная цель повышения энергии ускоренных частиц состоит в том, что это дает возможность изучать взаимодействие частиц на все меньших расстояниях и за более короткие времена. Удается изучать внутреннюю структуру элементарных частиц, обладающих крайне малыми размерами
Не предвидится никаких оснований полагать, что квантовая теория поля не работает вплоть до масштабов, соизмеримых с длиной Планка где начинают проявляться квантовые эффекты гравитации и где структура материи соответствует расстояниям порядка 10 -33 см и массе планка m p ≈ ћc/G) 1/2 ≈ 1.2×10 19 ГэВ/c 2 , т. е энергии в центре масс ≈10 19 ГэВ (ћ - постоянная Дирака, с -скорость света, G- гравитационная постоянная)
Наименьший доступный масштаб изучаемых явлений при столкновении частиц с импульсами p (энергия E = (p 2 c 2 + m 2 c 4) 1/2 определяется длиной волны l = h/p = hc/E.
Для решения данной задачи и используются соударения элементарных частиц в коллайдерах.
Сотни экспериментов уже позволили проникнуть в структуру материи, которая характеризуется расстояниями 10 -18 см . Конечно, создание коллайдеров на энергию в центре масс ≈ 10 7 ТэВ для реализации расстояний в 10 -33 см не представляется возможным.

1.5 . Сравнение адронных и лептонных коллайдеров

Представляет интерес рассмотреть некоторые преимущества и недостатки адронных и электрон - позитронных коллайдеров.
Адроны: протоны и антипротоны являются составными частицами, состоящими из трех кварков (двух u-кварков с электрическим зарядом +2/3 и одного d-кварка с зарядом -1/3, которые скреплены вместе глюонным полем (смотри также Табл.3.1 и ) Однако, если протон летит со скоростью очень близкой к скорости света, он оказывается заполненным в основном глюонами, а кварков и антикварков в нём содержится заметно меньше. Протоны и антипротоны в таких условиях выглядят практически одинаково, и поэтому нет особой разницы, сталкиваются ли протоны с протонами или протоны с антипротонами. Глюонное поле в нём перестает быть просто связывающей силой и материализуется в виде потока частиц — глюонов, — которые летят рядом с кварками. Быстро летящий протон состоит из перемешанных друг в друге глюонных, кварковых и даже антикварковых «облаков» — партонных плотностей.
Когда два протона сталкиваются лоб в лоб, то один кварк из одного протона сталкивается с кварком из встречного протона, а остальные партоны просто пролетают мимо. При столкновении партоны получают сильный «удар», выбивающий их из родительских протонов. Однако глюонное поле обладает конфайнментом - явлении, состоящем в невозможности получения кварков в свободном состоянии. В экспериментах наблюдаются только агрегаты кварков, состоящие из двух мезонов или трёх кварков (барионы). Происходит адронизация — энергия удара тратится на рождение многочисленных адронов. В этом процессе партоны - «наблюдатели» уже принимают самое активное участие. Можно хорошо рассчитать процессы с отдельными кварками или глюонами, но точно описать адронизацию пока не удается. В связи с адронизацией протон-протонное столкновение сильно отличается от столкновения лептонов (например электрон-позитрон). Процесс анализа p - p + столкновений весьма сложен.
Связь между теорией и экспериментом при адронных столкновениях не столь непосредственна, как в электрон-позитронных столкновениях. В экспериментах на адронных коллайдерах более сложно определить свойства новых частиц.
В отличие от протона, электрон и позитрон - элементарные частицы, и энергия, выделяемая при их столкновениях, определяется с высокой точностью. Электрон- позитронные коллайдеры позволяют легче определять так же другие характеристики, открываемых частиц .
Построенные адронные коллайдеры обладают очень большой энергией в центре масс. Однако далеко не вся эта энергия может быть использована на рождение новых частиц. Так для БАК из полной энергии 14 ТэВ полезно используется только энергия в 2 ТэВ. В случае электрон-позитронных ускорителей практически вся энергия оказывается полезной . Таким образом, при одинаковой энергии в центре масс электрон-позитронные коллайдеры имеют 5 -10 кратное преимущество перед адронными коллайдерами .
Характеризуя электрон-позитронные линейные коллайдеры следует отметить, что частота повторения соударений встречных сгустков мала по сравнению с кольцевыми электрон- позитронными коллайдерами. Следует еще раз отметить, что основной недостаток линейных коллайдеров состоит в том, что каждый сгусток электронов и позитронов используется только один раз.
Вблизи плотного потока заряженных частиц электромагнитное поле, ими возбуждаемое очень велико. Излучение в этом поле приводит к большим потерям энергии сталкивающихся частиц и увеличивает уровень шума. Для его ослабления пучки растягивают в одном из поперечных направлений .
Благодаря малому эмиттансу пучков и очень сильной их фокусировке, в линейных коллайдерах надеются получить светимость в центре масс, равную ((2-6) ×10 34 см -2 с -1 , не уступающую светимости кольцевых коллайдеров.

Литература к Введению и Главе 1

Properties of an intersecting beam accelerating system”// Kerst D. W./ CERN Symposium, v. I, Gen., 1956, p. 36 http://cdsweb.cern.ch/record/1241555/files/p36.pdf

«Ускорители и встречные пучки» // Г.И. Будкер / В кн.: Труды VII Международной конференции по ускорителям заряженных частиц высоких энергий, т. 1, Ер., 1970, с. 33; Встречные пучки. Шестое Всесоюзное совещание по ускорителям заряженных частиц (Дубна, 1978), Дубна, 1978, с. 13; X Международная конференция по ускорителям заряженных частиц высоких энергий (Протвино, 1977), т. 1, Серпухов, 1977,.

«Ускорители на встречных пучках» // В. П. Дмитриевский./ Большая советская энциклопедия http://slovari.yandex.ru/~книги/БСЭ/Ускорители%20на%20встречных%20пучках .

« Физика хиггсовского бозона на будущих фотонных коллайдерах»// И.П.Иванов/ http://hnature.web.ru/db/msg.html?mid=1181352

« Темная энергия вселенной» // В. Лукин, Е. Михеева /«Вокруг света» № 9 (2816). Сентябрь 2008.

«Поиски частиц темной энергии»// В.А.Рябов и др./»Успехи физических наук» Том 1788,№11 с.1129-1161

“CLIC 2008 PARAMETERS”// H. Braun et all / CLIC-Note-764

“Design Study of the CLIC Injector and Booster Linacs With the 2007 Beam Parameters”// A. Ferrari et al./ CLIC - Note -737

”A Very Large Lepton Collider in the WLHC tunnel”//T.Sen and J.Norem /www.capp. ill.edu/workshops//opem/References/sen.pdf.

“Эксперимент”// Б.С. Ишханов, И.М. Капитонов, Э.И. Кэбин / Web-публикация на основе учебного пособия Б.С. Ишханов, И.М. Капитонов, Э.И. Кэбин. "Частицы и ядра. Эксперимент", М.: Издательство МГУ, 2005. http://nuclphys.sirp.msu.ru /experiment/

“Коллайдер” // Б.С. Ишханов, И.М. Капитонов, Э.И. Кэбин / http://nuclphys.sirp.msu.ru/experiment/accelerators/collider.htm .

“ LHC Machine”//L. Evans and P.Bryant (editirs)/ Published by Institute of Physics Publishing and SISSA, 2008 JINST 3 SO8001

“Физика на Большом адроном коллайдере”/ / ”Успехи Физических Наук”, Том179, №6. Июнь 2009 г., с.571-579 (устный выпуск журнала «Успехи физических наук»)

« Единая физика к 2050» // С. Вайнберг, перевод А. Крашеницы/ http://www.scientifisic.ru/journal/weinberg/weinberg,html .

« Эксперименты на адронных коллайдерах» http://elementy.ru/LHC/experiments

«Физика ядра и элементарных частиц. Элементарные частицы» //В. Каланов/ http://znaniya-sila.narod.ru/phisics/phisics_atom_02.htm

«Четыре основных вида сил в природе»// Ч.Киттель, У.Найт, М. Рудерман/ Берклеевский Курс Физики. Том 1. Механика, стр.456

«Основы физики элементарных частиц. Строение материи»// http://physics03.narod.ru/Interes/Doclad/bak3.htm

«Фундаментальные взаимодействия»// http://ru.wikipedia.org/wiki/Фундаментальные_взаимодействия

«За гранью БАК: будущие коллайдеры» // Д. Борн/ http://www.3dnews.ru/news/za_granu_bak_budushie_kollaideri/

«Грядущие революции в фундаментальной физике» //Дэвид Гросс/ http://elementy.ru/lib/430177

«Петлевая квантовая гравитация» http://ru.wikipedia.org/wiki

“Ученые увеличили число частиц бога до 5» // Lenta.ru. http://lenta.ru/news/2010/06/15/boson/

«Кварк-глюонная плазма» // http://сайт/enc/e036.htm

“ Hunting the Quark Gluon Plasma”// BNL-73847-2005 Final Report / www.bnl.gov/npp/docs/Hunting%20the%20QGP.pdf Физика

«Эксперимент LHCb»//НИЯФ МГУ,2004 / http://physics03.narod.ru/Interes/Doclad/antiv.htm

«Движение заряженных частиц в электрических и магнитных полях»// Л.А. Арцимович и С.Ю. Лукьянов /Книга. Издательство «Наука». Москва 1972, стр.171-177

«Коллайдер нового поколения» //Б. Бэриш, Н. Уоке http:// physics03.narod.ru/Interes/Doclad/bak13.htmр, Х. Ямамото. Перевод: А.А. Сорокин Специальный репортаж в журнале "В мире науки" № 5 за 2008 год Коллайдер нового поколения.

”Accelerator Physics and Technologies for Linear Collider. Lecture I”// S.D..Holmes/ Hep.uchicago.edu/~kwangie/LectureNotes_Holmes.pdf

«Фотонные коллайдеры и исследование фундаментальных взаимодействий»// И. Ф. Гинзбург/ http://www-fima-ru.narod.ru/

“Muon Collider Progress”// R.B. Palmer

/www.cern.ch/accelconf/e98/PAPERS/THZ04A.PDF THZ04A.PDF

“ MULTI-MODE SLED-II PULSE COMPRESSOR”// S.V. Kuzikov et all /Proceedings of LINAC 2004, THP28 pp. 660-662

“ A Multy-Moded RF Delay Linear Distribution System” //S.G. Tantawi et all / SLAC-PUB-9125

“RF Breakdown Studies in Room Temperature Electron Linac Structures / Gregory A. Loew and W. Wang // Slac-PUB-4647, May 1988.

“ Gradient Limitation For High-frequency Accelerators”/ Döbert // Proceedings of Linac 2004, Lübeck, Germany, WE 101

“ The Physics & Technology of a 0,5 to 1,0 TeV Linear colliders”.// Stuart Tovey - Wollongang - 2004./ Интернет, SNT- Wollongang, ppt.

“4 XFEL accelerator” //

“The European X-Ray Free-Electron Laser. Technical design report” // http://xfel.desy.de/localfs.Explorer_read?Current.Path =afs/desy.de/group/xfel/wof/EPT/TRD/XFEL-TRD-final.pdf.

ВВЕДЕНИЕ

Ускорители на встречных пучках, получили название коллайдеров (от английского слова to collide - сталкиваться). Они являются основными инструментами экспериментального изучения процессов физики элементарных частиц в области сверхвысоких энергий Величина энергии получаемая при столкновениях пучков не может быть достигнута в обычных ускорителях с неподвижной мишенью.
Разработка и сооружение установок со встречными пучками была начата в 1956 г. в лабораториях России (СССР) и за рубежом после опубликования предложения об использовании коллайдеров американского физика У. Керста .
В работе Г.И. Будкера содержится замечание, что впервые идею о применении встречных пучков высказал Я.Б. Зельдович (СССР), правда в пессимистическом тоне из-за малой плотности частиц в сталкивающихся пучках.
Первоначально создавались электрон-электронные и электрон-позитронные коллайдеры (1956-1966 гг.) Предложение об их разработке принадлежит Г.И. Будкеру (СССР) . Первые коллайдеры были созданы в Институте ядерной физики (СССР Россия), в Стэнфордском центре линейных ускорителей (США), в лаборатории линейных ускорителей во Фраскати (Италия), в лаборатории Орсэ (Франция). Несколько позже были запущены адронные коллайдеры (адрон - от греческого слова «adros», означающее «крупный, массивный»), в том числе коллайдеры с ионами. Коллайдеры с протон-протонными и протон-электронными пучками были созданы в ЦЕРН (Швейцария), Германии и Великобритании (смотри Табл.1а-В и Табл. 1b-В).
Проблема увеличения светимости сталкивающихся пучков в кольцевых коллайдерах была решена, благодаря аккумуляции ускоряемых частиц в накопительных кольцах. В линейных коллайдерах большая плотность взаимодействующих пучков обеспечивается ускорителями с сильноточными пучками, которые обладают малым эмиттансом и малым энергетическим разбросом, а также при использовании синхротронного излучения в демпфирующих кольцах и ионизационного охлаждения.
Первый электрон-позитронный коллайдер ВЭПП-2, изготовленный в ИЯФ им. Г.И. Будкера (Россия), был кольцевым. В качестве ускорителя использовался безжелезный синхротрон, пучок которого инжектировался в накопительное кольцо. Пока единственный линейный электрон-позитронный коллайдер создан на основе ускорителя SLAC. Повышение светимости в нем достигается благодаря использованию демпфирующих колец.
Появление ускорителей заряженных частиц и коллайдеров с высокой энергией позволило развивать новые теоретические модели физики элементарных частиц, осуществлять экспериментальную проверку «Стандартной модели».
Физические исследования в области элементарных частиц потребовали существенного увеличения энергии сталкивающихся лептонов и адронов в центре масс (до 1 ТеВ и более). На сооружении коллайдеров в ТэВ-ом диапазоне энергией с конца 80-х годов прошлого столетия сконцентрировано внимание мирового содружества ученых. В настоящее время эти работы стали интернациональными.
Физики надеются, что экстремально высокие энергии позволят ответить на ряд фундаментальных вопросов науки: как частицы приобретают массу? Что представляет собой структура пространство - время? Что создает темную энергию и темную материю космоса? . Предполагается в частности , что на коллайдерах станет возможным проведение точных измерений характеристик Хиггс бозона, ответственного за возникновения массы элементарных частиц и установление его поля. На них также окажется возможным исследование вопросов суперсимметрии.

Таблица № 1а-В. Перечень основных построенных коллайдеров

Наименование
коллайдера
ХАРАКТЕРИСТИКИ УСКОРИТЕЛЕЙ
Центр, город, страна Годы работы Тип частиц Максим.
энергия
пучка, ГэВ
Светимость
10 30 см -2 с -1
Периметр
(длина),
км
ВЭПП-2000 ИЯФ,
Россия
2006 е + е − 1 100 0,024
ВЭПП-4М ИЯФ,
Россия
1994 е + е − 6 20 0,366
ВЕРС Китай 1989-2005 е + е − 2,2 5 на 1,55 ГэВ 12,6 на 1,843 ГэВ 0,2404
ВЕРС-II Китай c 2007 е + е − 1,89 1000 0,23753
DAFNE Frascati, Италия 1999-2008 е + е − 0,7 150 0,098
CESR Cornell 1979- 2002 е + е − 6 1280 на 5,3 ГэВ 0,768
CESR-C Cornell с 2002 е + е − 6 60 на 1,9 ГэВ 0,768

KEK, Япония

е + е − е − : 8
е + :3,5
SLAC, е + е − е − : 7-12
е + : 2,5- 4
СЛК SLAC, е + е − 6 Линейный
3
HERA DESY, Германия c 1992

e 30
p 920

75 6,336
Tevatron Fermilab,
США
c 1987 p + p − 980 171 6,28
RHIC Brookhaven,
США

pp,
Au-Au,
Cu-Cu,
d-Au

10;
0,0015;
0,02;
0,07

3,834
Большой э/п коллайдер БЭПК (LEP) CERN е + е − 24 на Z o

100 при > 90 ГэВ

Большой адронный коллайдер БАК (LHC) CERN pp, 3500
(план 7000)
10000

(В 2011 году достигнуто 0,001)

26,659
Pb-Pb 1380/n
(план 2760)

Физики почти уверены, что революционные открытия с использованием коллайдеров будут сделаны в пределах следующие десять - пятнадцать лет.
Продолжение разработки новых электрон-позитронных линейных коллайдеров, в том числе фотонных и мюонных, происходит во время, когда начал работать Большой кольцевой адронный коллайдер (БАК, LHC). На этом коллайдере в первую очередь будут решаться упомянутые выше задачи физике элементарных частиц и вопросы мироздания.

Таблица № 1b -В. Перечень некоторых разрабатываемых линейных коллайдеров

В коллайдерах в качестве ускорителей нашли применение синхротроны и линейные резонансные ускорители (ЛРУ). Даже в кольцевых колайдерах, основанных на синхротронах, в качестве инжекторов синхротронов обязательно используются ЛРУ. Ускорение частиц в синхротронах происходит в резонаторных системах, являющихся фрагментами ВЧ систем линейных ускорителей. ЛРУ являются основой линейных лептонных коллайдеров. Новые перспективные методы ускорения частиц в коллайдерах, такие как кильватерное ускорение в плазме, также требуют использования ЛРУ, как возбудителей плазмы.
Разработка новых линейных высокоэнергетичных электрон-позитронных коллайдеров заставила провести широкие теоретические и экспериментальные исследования в части выбора диапазона рабочих частот, используемых в линейных резонансных ускорителях. электронов (ЛУЭ) и протонов (ЛУП). Стремление сократить длину ускорителей потребовало разработки новых ускоряющих структур, работающих в С -,Х -, K u - и К диапазонах длин волн.
При создании новых коллайдеров.ТеВ - диапазона энергий были решены многие вопросы технологии линейных резонансных ускорителей. Созданы ВЧ ускоряющие структуры, перечисленных выше диапазонов, работающие при существенно более высоких частотах, чем использовавшиеся ранее. Обеспечивается надежная работа «теплых» структур с ускоряющим градиентом в 100 МВ/м на частотах до 12 ГГц.(K u - диапазон).
Разработаны высокомощные ВЧ источники - однолучевые клистроны Х диапазона.
Усовершенствованы также другие элементы трактов ВЧ питания, например, устройства компрессии ВЧ импульса или задержанного распределения . Эта техника позволяет использовать один клистрон для питания нескольких ускоряющих секций.
Разработаны многолучевые клистроны L диапазона на импульсную мощность 10 МВт и длительность ВЧ импульса 1,6 мс.
В тоже время необходимо отметить, что первоначально намеченные цели создания коллайдеров Т - диапазона энергий, используя линейные ускорители K диапазона (частота 30 ГГц), реализовать не удалось. Идея использования сверхвысоких частот основывалась на том, что электрическая прочность структуры почти линейно повышается с увеличением частоты . Широкие теоретические и экспериментальные исследования Нового Линейного Коллайдера (NLC) в США, Глобального линейного коллайдера (GLC) в Японии, Японского линейного коллайдера (JLC) и компактного линейного коллайдера (КЛК, CLIC) в Швейцарии показали однако, что, по крайней мере при существующей технологии, отсутствует заметное увеличение предельного градиента электрического поля на частотах колебаний свыше 12 ГГц. С этим и был связан переход от частоты 30 ГГц на частоту 12 ГГц в коллайдере CLIC.
Желание увеличить надежность работы и некоторые другие причины привели к тому, что разработка Международного (глобального) линейного электрон-позитронного коллайдера (Internation Linear Collider, ILC) стала основываться на использовании в нем L- диапазона частот и сверхпроводящих ускоряющих структур.
Другой проблемой, которую пришлось решать, была связана с поперечными диодными модами высокого порядка, наводимыми электронными или позитронными сгустками частиц в ускоряющих структурах и электронопроводах. Появление этих полей особенно нежелательно при больших длинах электронных трактов. Высшие моды поперечных дипольных полей приводят к увеличению поперечных размеров пучка (вплоть до его развала), увеличению эмиттанса и энергетического разброса. Моды, вызывающие нестабильность пучков, особенно неприятны при высоких частотах, но должны обязательно подавляться также и в L - диапазоне.
Особое место занимают вопросы, связанные с проектом Компактного Линейного Коллайдера, КЛК (Compact Linear Collider, CLIC). В отличие от обычных схем в CLIC используется принцип двух-лучевого ускорения . Питание основных многосекционных ускоряющих структур ЛУ электронов и позитронов осуществляется не клистронами, а ВЧ энергией, которая генерируется в де-ускорителях при торможении релятивистского пучка ускорителей-возбудителей.
Как указывалось выше, создание ЛУЭ для коллайдеров стимулировало разработку новых клистронов большой мощности, в том числе, многолучевых в разных частотных диапазонах..
Следует отметить, что разработки ЛУЭ для коллайдеров нашли применение в лазерах на свободных электронах, при создания установок неразрушающего контроля, для терапии и диагностики злокачественных образований. ВЧ техника, разработанная для Международного линейного коллайдера, и связанная с ЛУЭ, используется при проектировании Европейского рентгеновского лазера на свободных электронах, сооружаемого в ДЭЗИ .
Основные вопросы, относящиеся к ЛРУ, решались при сооружении и разработке линейных коллайдеров электронов и позитронов. В основном они освещены в Главе 3 «Линейные электрон-позитронные и фотонные коллайдеры высокой энергии». Более кратко, вопросы, относящиеся к ЛРУ - инжекторам и системам ускорения частиц в синхротронах изложены в Главе 2 «КОЛЬЦЕВЫЕ КОЛЛАЙДЕРЫ ВЫСОКОЙ ЭНЕРГИИ», где описываются Большой электрон-позитронный коллайдер (БЭПК) и большой адронноый коллайдер (БАК).
Материал, связанный с кильватерным методом ускорения, приведен в Главе 4 «КИЛЬВАТЕРНЫЙ МЕТОД УСКОРЕНИЯ».
Некоторые сведения о ЛРУ и фрагментах ВЧ систем ЛРУ, которые используются в фотонных и мюонных ускорителях даны в разделе 2.3 «МЮОННЫЕ КОЛЛАЙДЕРЫ». и в разделе 3.4 «ФОТОННЫЕ КОЛЛАЙДЕРЫ». Следует отметить, однако, что в опубликованной литературе пока отсутствуют детали ЛРУ, проектируемые для мюонных коллайдеров.
Предполагается, что читатель знаком с теорией и техникой резонансных линейных ускорителей.
Для удобства пользования книгой в Главе 1 кратко рассматриваются некоторые вопросы теории коллайдеров, что даст возможность работать с книгой, меньше прибегая к другим источникам информации, содержащейся в многочисленных монографиях, статьях и докладах, ссылки на которые приведены в конце этой Главы.

Разгоняемые в БАК элементарные частицы имеют заряд. Если речь идет, например, о протонах, этот заряд будет положительным. На находящуюся в электрическом поле частицу действует сила, которая придает ей ускорение. Именно этот физический принцип лежит в основе работы ускорительных секций БАК. С точки зрения инженерного воплощения этого принципа все, конечно, несколько сложнее. В БАК частицы ускоряются в резонаторах — камерах сложной формы. В резонаторах возбуждается мощная стоячая электромагнитная волна (в чем-то ее можно уподобить колебанию струны), фазы колебаний которой согласованы с прохождением по камере сгустка заряженных частиц таким образом, чтобы волна (в микроволновом диапазоне) все время «подталкивала» его в заданном направлении. Если частицу в БАК ускоряет электрическое поле, то направление ей задает поле магнитное. Именно каскад из сверхпроводящих магнитов постоянно отклоняет путь частицы, чтобы она двигалась не по прямой, а описывала 27-километровые круги. Кроме того, магниты отвечают за фокусирование пучка.

Почему радуга иногда видна в виде полной дуги, а иногда лишь в виде фрагментов?

В идеальном случае радуга имеет форму дуги от горизонта до горизонта, с высоты можно даже наблюдать радугу, имеющую полную кольцевую форму. Хорошо известно, что это явление возникает из-за преломления солнечных лучей в капле воды, но, если воздух насыщен влагой лишь на отдельных участках, в дуге могут возникнуть разрывы.

Каким образом из воздуха извлекается азот?

Существует несколько промышленных методов извлечения азота из атмосферного воздуха. Один из них — фракционная дистилляция сжиженного воздуха. Дело в том, что температура кипения азота (-195°C) ниже, чем температура кипения кислорода (-183°C). Поэтому при постепенном нагревании жидкого воздуха сначала испарится азот, а кислород останется в жидкой фазе. Так эти газы можно разделить.

Почему человек чихает, когда ему холодно?

Главная причина чихания, то есть взрывного выдоха через нос, — потребность организма выбросить из носоглотки некие инородные раздражители ее слизистой оболочки, например пыль или соринки. Такая же реакция следует на воспаление слизистой. Однако нервные окончания, которые подают сигнал центру в продолговатом мозге, ответственному за чихание, реагируют и на другие раздражители. Например, резкую смену температуры окружающего воздуха или даже яркий свет.

Как спят киты?

Это один из интереснейших вопросов науки о морских животных. Дело в том, что в отличие от человека, дыхание которого может управляться неосознанно, киты делают вдох и выдох сознательным усилием. Иными словами, мы можем продолжать дышать, находясь без сознания, а кит не может. Исследования дельфинов показали, что эти представители китообразных умеют спать по очереди то одним полушарием, то другим. Но недавно ученые из шотландского университета Сент-Эндрю выяснили, что, например, кашалоты способны засыпать полностью, обоими полушариями. Эти животные временами «дрейфуют» под водой в вертикальном положении, причем практически не реагируют при этом на внешние раздражители. Оказалось, что кашалоты все же улучают небольшие промежутки времени для полноценного сна. Поспав 10−15 минут, они пробуждаются, выныривают к поверхности, делают вдох и вновь погружаются под воду для очередной порции дремы.

(или БАК) - на данный момент самый большой и мощный ускоритель частиц в мире. Эта махина была запущена в 2008 году, но долго работала на пониженных мощностях. Разберемся, что это такое и зачем нужен большой адронный коллайдер.

История, мифы и факты

Идея создания коллайдера была озвучена в 1984 году. А сам проект на строительство коллайдера был одобрен и принят аж в 1995 году. Разработка принадлежит Европейскому центру ядерных исследований (CERN). Вообще запуск коллайдера привлек к себе большое внимание не только ученых, но и простых людей со всего мира. Говорили о всевозможных страхах и ужасах, связанных с запуском коллайдера.

Впрочем, кто-то и сейчас, вполне возможно, ждет апокалипсиса, связанного с работой БАК и тресется от одной мысли о том, что будет, если ч взорвется большой адронный коллайдер. Хотя, в первую очередь все боялись черной дыры, которая, сначала будучи микроскопической, разрастется и благополучно поглотит сначала сам коллайдер, а за ним Швейцарию и весь остальной мир. Также большую панику вызывала аннигиляционная катастрофа. Группа ученых даже подала в суд, пытаясь остановить строительство. В заявлении говорилось, что сгустки антиматерии, которые могут быть получены в коллайдере, начнут аннигилировать с материей, начнется цепная реакция и вся Вселенная будет уничтожена. Как говорил известный персонаж из «Назад в Будущее»:

Вся Вселенная, конечно, в самом худшем случае. В лучшем – только наша галактика. Доктор Эмет Браун.

А теперь попытаемся понять, почему он адронный? Дело в том, что он работает с адронами, точнее разгоняет, ускоряет и сталкивает адроны.

Адроны – класс элементарных частиц, подверженных сильному взаимодействию. Адроны состоят из кварков.

Адроны делятся на барионы и мезоны. Чтобы было проще, скажем, что из барионов состоит почти все известное нам вещество. Упростим еще больше и скажем, что барионы - это нуклоны (протоны и нейтроны, составляющие атомное ядро).

Как работает большой адронный коллайдер

Масштаб очень впечатляет. Коллайдер представляет собой кольцевой туннель, залегающий под землей на глубине ста метров. Длина большого адронного коллайдера составялет 26 659 метров. Протоны, разогнанные до скоростей близких к скорости света, пролетают в подземном круге по территории Франции и Швейцарии. Если говорить точно, то глубина залегания туннеля лежит в пределах от 50 до 175 метров. Для фокусировки и удержания пучков летящих протонов используются сверхпроводящие магниты, их общая длина составляет около 22 километров, а работают они при температуре -271 градусов по Цельсию.

В составе коллайдера 4 гигантских детектора: ATLAS, CMS, ALICE и LHCb. Помимо основных больших детекторов, есть еще и вспомогательные. Детекторы предназначены для фиксации результатов столкновений частиц. То есть после того, как на околосветовых скоростях сталкиваются два протона, никто не знает чего ожидать. Чтобы «увидеть», что получилось, куда отскочило и как далеко улетело, и существуют детекторы, напичканные всевозможными датчиками.

Результаты работы большого адронного коллайдера.

Зачем нужен коллайдер? Ну уж точно не для того, чтобы уничтожить Землю. Казалось бы, какой смысл сталкивать частицы? Дело в том, что вопросов без ответов в современной физике очень много, и изучение мира с помощью разогнанных частиц может в буквальном смысле открыть новый пласт реальности, понять устройство мира, а может быть даже ответить на главный вопрос «смысла жизни, Вселенной и вообще».

Какие открытия уже совершили на БАК? Самое знаменитое – это открытие бозона Хиггса (ему мы посвятим отдельную статью). Помимо того были открыты 5 новых частиц , получены первые данные столкновений на рекордных энергиях , показано отсутствие асимметрии протонов и антипротонов , обнаружены необычные корреляции протонов . Список можно продолжать долго. А вот микроскопических черных дыр, которые наводили страх на домохозяек, обнаружить не удалось.

И это при том, что коллайдер еще не разогнали до его максимальной мощности. Сейчас максимальная энергия большого адронного коллайдера – 13 ТэВ (тера электрон-Вольт). Однако, после соответствующей подготовки протоны планируют разогнать до 14 ТэВ . Для сравнения, в ускорителях- предшественниках БАК максимально полученные энергии не превышали 1 ТэВ . Так разгонять частицы мог американский ускоритель Тэватрон из штата Иллинойс. Энергия, достигнутая в коллайдере - далеко не самая Большая в мире. Так, энергия космических лучей, зафиксированных на Земле, превышает энергию частицы, разогнанной в коллайдере в миллиард раз! Так что, опасность большого адронного коллайдера минимальна. Вполне вероятно, что после того, как все ответы будут получены с помощью БАК, человечеству придется строить еще один коллайдер по-мощнее.

Друзья, любите науку, и она обязательно полюбит Вас! А помочь Вам полюбить науку легко смогут . Обращайтесь за помощью, и пусть учеба приносит радость!

© 2024 Helperlife - Строительный портал