Вконтакте Facebook Twitter Лента RSS

Пожарная безопасность. Дайте определение - Документ. Землетрясение Оценка и измерение силы и воздействий землетрясений

Землетрясения - это подземные толчки и колебания земной поверхности.


Большей части России разрушительные землетрясения не угрожают - они происходят, главным образом, в горных районах, где земная кора более подвижна и неустойчива, так как горные хребты являются молодыми формированиями, поэтому в таких районах придается важное значение антисейсмическому строительству.

Разрушения зданий и сооружений вызываются как колебаниями почвы, так

Возникающие колебания распространяются в Земле, и, через основания, передаются на сооружения. Разрушительны и гигантские приливные волны (цунами), возникающие при сейсмических смещениях на морском дне. Опасны также и последствия землетрясений – паника, пожары, нарушение транспортного сообщения.

Ежегодно на Земле происходит до ста тысяч землетрясений, фиксируемых приборами; из них люди ощущают около десяти тысяч, причем примерно сто землетрясений приводят к большим землетрясениям, и, в среднем, одно землетрясение в год носит катастрофический характер.

Примером их возможной разрушительной силы может являться землетрясение, произошедшее в Японии 1 сентября 1923 г. Землетрясение охватило площадь около 56 тыс. км². В течение нескольких секунд были практически полностью уничтожены Токио, Йокогама, Йокосука и ещё 8 менее крупных городов. В Токио только пожаром было уничтожено свыше 300 тысяч зданий (из миллиона), в Йокогаме подземными толчками было разрушено 11 тысяч зданий и ещё 59 тысяч сгорело. Ещё 11 городов пострадали менее серьёзно. Из 675 мостов 360 было уничтожено огнём. Токио лишился всех каменных зданий, устоял только отель «Империал», возведенный за год до этого знаменитым Фрэнком Ллойдом Райтом. Этот отель был первым в Японии сейсмоустойчивым каменным зданием. Официальное число погибших — 174 тысячи, ещё 542 тысячи числятся пропавшими без вести, свыше миллиона остались без крова. Общее число пострадавших составило около 4 миллионов. Материальный ущерб, понесённый Японией от землетрясения Канто, оценивается в 4,5 миллиарда долларов, что составляло на тот момент два годовых бюджета страны.

Согласно научной классификации, по глубине возникновения землетрясения делятся на 3 группы: «нормальные» — 33 — 70 км, «промежуточные» — до 300 км, «глубокофокусные» — свыше 300 км.

К последней группе относится землетрясение, которое произошло 24 мая 2013 года в Охотском море, тогда сейсмические волны достигли многих уголков России, в том числе и Москвы. Глубина этого землетрясения достигала 600 км.

ПРИЧИНЫ ЗЕМЛЕТРЯСЕНИЙ

Одной из причин землетрясений является быстрое смещение участка литосферы (литосферных плит) как целого в момент релаксации (разрядки) упругой деформации напряжённых пород в очаге землетрясения.

Большинство очагов землетрясений возникает близ поверхности Земли.

При землетрясении в результате перемещения частиц горных пород возникают упругие волны, называемые сейсмическими. Они распространяются в поверхностных слоях Земли с огромной скоростью: продольные – от 5 до 8 км\сек, поперечные – от 3 до 5 км/сек.

Скольжению пород вдоль разлома вначале препятствует трение. Вследствие этого, энергия, вызывающая движение, накапливается в форме упругих напряжений пород. Когда напряжение достигает критической точки, превышающей силу трения, происходит резкий разрыв пород с их взаимным смещением; накопленная энергия, освобождаясь, вызывает волновые колебания поверхности земли — землетрясения.

Землетрясения могут возникать также при смятии пород в складки, когда величина упругого напряжения превосходит предел прочности пород, и они раскалываются, образуя разлом.

Сейсмические волны, порождаемые землетрясениями, распространяются во все стороны от очага подобно звуковым волнам. Точка, в которой начинается подвижка пород, называется фокусом, очагом или гипоцентром, а точка на земной поверхности над очагом — эпицентром землетрясения. Ударные волны распространяются во все стороны от очага, по мере удаления от него их интенсивность уменьшается.

Сейсмические волны делятся на волны сжатия и волны сдвига.

Волны сжатия, или продольные сейсмические волны, вызывают колебания частиц пород, сквозь которые они проходят, вдоль направления распространения волны, обуславливая чередование участков сжатия и разрежения в породах. Скорость распространения волн сжатия в 1,7 раза больше скорости волн сдвига, поэтому их первыми регистрируют сейсмические станции. Волны сжатия также называют первичными (P-волны). Скорость P-волны равна скорости звука в соответствующей горной породе. При частотах P-волн, больших 15 Гц, эти волны могут быть восприняты на слух как подземный гул и грохот.

Волны сдвига, или поперечные сейсмические волны, заставляют частицы пород колебаться перпендикулярно направлению распространения волны. Волны сдвига также называют вторичными (S-волны).

Существует ещё третий тип упругих волн — длинные или поверхностные волны (L-волны). Именно они вызывают самые сильные разрушения.

Скорости сейсмических волн могут достигать 8 км/с.

Сила землетрясения, испытываемая сооружением, зависит от удаления и глубины очага, от геологии местности и гидрогеологии участка застройки.

ВОЗДЕЙСТВИЯ СЕЙСМИЧЕСКИХ ВОЛН НА СООРУЖЕНИЯ

Последствия землетрясений зависят от пространственной жесткости, размеров, формы и веса зданий, а также от количества и характера толчков. Наиболее опасны для зданий горизонтальные составляющие колебаний почвы, поскольку при землетрясении здания работают как вертикальный брус или пластина, консольно заделанные в грунт. Возникающие в районе эпицентра вертикальные сейсмические нагрузки более опасны для горизонтальных конструкций – перекрытий, карнизов и т.п.

Степень разрушения зданий и сооружений в одном сейсмическом районе может быть неодинаковой вследствие разных конструктивных типов сооружений, различного качества строительных материалов (к примеру, п ри одной и той же интенсивности землетрясения одни здания могут подвергнуться большим повреждениям, чем другие, если у них плохое сцепление камня с раствором) , специфики производства работ и характера оснований, (например, на слабых основаниях разрушения всегда больше, чем на прочных).

ОЦЕНКА И ИЗМЕРЕНИЕ СИЛЫ И ВОЗДЕЙСТВИЙ ЗЕМЛЕТРЯСЕНИЙ

Для оценки и сравнения землетрясений используются шкала магнитуд (например, шкала Рихтера) и различные шкалы интенсивности.

Шкала магнитуд различает землетрясения по величине магнитуды, которая является относительной энергетической характеристикой землетрясения. Существует несколько магнитуд и соответственно магнитудных шкал: локальная магнитуда (ML); магнитуда, определяемая по поверхностным волнам (Ms); магнитуда, определяемая по объемным волнам (mb); моментная магнитуда (Mw). Наиболее популярной шкалой для оценки энергии землетрясений является локальная шкала магнитуд Рихтера. По этой шкале возрастанию магнитуды на единицу соответствует 32-кратное увеличение освобождённой сейсмической энергии.

Интенсивность землетрясений (не может быть оценена магнитудой) оценивается по тем повреждениям, которые они причиняют в населённых районах.

Интенсивность является качественной характеристикой землетрясения и указывает на характер и масштаб воздействия землетрясения на поверхность земли, на людей, животных, а также на естественные и искусственные сооружения в районе землетрясения. В мире используется несколько шкал интенсивности: в Европе — европейская макросейсмическая шкала (EMS), в Японии — шкала Японского метеорологического агентства (Shindo), в США и России — модифицированная шкала Меркалли (MM):

1 балл (незаметное) — отмечается только специальными приборами

2 балла (очень слабое) — ощущается только очень чуткими домашними животными и некоторыми людьми в верхних этажах зданий

3 балла (слабое) — ощущается только внутри некоторых зданий, как сотрясение от грузовика

4 балла (умеренное) — землетрясение отмечается многими людьми; возможно колебание окон и дверей;

5 баллов (довольно сильное) — качание висячих предметов, скрип полов, дребезжание стекол, осыпание побелки;

6 баллов (сильное) — легкое повреждение зданий: тонкие трещины в штукатурке, трещины в печах и т. п.;

7 баллов (очень сильное) — значительное повреждение зданий; трещины в штукатурке и отламывание отдельных кусков, тонкие трещины в стенах, повреждение дымовых труб; трещины в сырых грунтах;

8 баллов (разрушительное) — разрушения в зданиях: большие трещины в стенах, падение карнизов, дымовых труб. Оползни и трещины шириной до нескольких сантиметров на склонах гор;

9 баллов (опустошительное) — обвалы в некоторых зданиях, обрушение стен, перегородок, кровли. Обвалы, осыпи и оползни в горах. Скорость продвижения трещин может достигать 2 см/с;

10 баллов (уничтожающее) — обвалы во многих зданиях; в остальных — серьёзные повреждения. Трещины в грунте до 1 м шириной, обвалы, оползни. За счет завалов речных долин возникают озёра;

11 баллов (катастрофа) — многочисленные трещины на поверхности Земли, большие обвалы в горах. Общее разрушение зданий;

12 баллов (сильная катастрофа) — изменение рельефа в больших размерах. Огромные обвалы и оползни. Общее разрушение зданий и сооружений.

Землетрясения силой в 6 баллов и менее не вызывают опасных повреждений, а землетрясения силой в 10 баллов и более настолько разрушительны, что противодействовать им обычными способами повышения сейсмостойкости не представляется возможным, а потому в районах, где вероятны такие землетрясения, строительство обычно не ведется. Следовательно, здания могут быть защищены от землетрясений силой 7-9 баллов. В районах с сейсмичностью в 9 баллов возведение сооружений первой категории сопровождается дополнительными антисейсмическими мероприятиями.

Не без использования материалов книги М. Бойко "Диагностика повреждений и методы восстановления эксплуатационных качеств зданий" и wikipedia.org

Механизм возникновения

Любое землетрясение - это мгновенное высвобождение энергии за счет образования разрыва горных пород, возникающего в некотором объеме, называемом очагом землетрясения, границы которого не могут быть определены достаточно строго и зависят от структуры и напряженно-деформированного состояния горных пород в данном конкретном месте. Деформация, происходящая скачкообразно, излучает упругие волны. Объем деформируемых пород играет важную роль, определяя силу сейсмического толчка и выделившуюся энергию.

Большие пространства земной коры или верхней мантии Земли, в которых происходят разрывы и возникают неупругие тектонические деформации, порождают сильные землетрясения: чем меньше объем очага, тем слабее сейсмические толчки. Гипоцентром, или фокусом, землетрясения называют условный центр очага на глубине. Глубина его обычно бывает не больше 100 км, но иногда доходит и до 700 километров. А эпицентром - проекцию гипоцентра на поверхность Земли. Зона сильных колебаний и значительных разрушений на поверхности при землетрясении называется плейстосейстовой областью(рис. 1.2.1.)

Рис. 1.2.1.

По глубине расположения гипоцентров землетрясения делятся на три типа:

1) мелкофокусные (0-70 км),

2) среднефокусные (70-300 км),

3) глубокофокусные (300-700 км).

Чаще всего очаги землетрясений сосредоточены в земной коре на глубине 10-30 километров. Как правило, главному подземному сейсмическому удару предшествуют локальные толчки - форшоки. Сейсмические толчки, возникающие после главного удара, называются афтершоками.Происходящие в течение значительного времени,афтершоки способствуют разрядке напряжений в очаге и возникновению новых разрывов в толще горных пород, окружающих очаг.

Рис. 1.2.2 Типы сейсмических волн: а - продольные P; б - поперечные S; в - поверхностные ЛяваL; г - поверхностные Рэлея R. Красной стрелкой показано направление распространения волны

Сейсмические волны землетрясения, возникающие из-за толчков, распространяются во все стороны от очага со скоростью до 8 километров в секунду.

Различают четыре вида сейсмических волн: P (продольные) и S (поперечные) проходят под землей, волны Лява (L) и Рэлея (R) - по поверхности (рис.1.2.2.)Все виды сейсмических волн распространяютсяочень быстро. Волны P, сотрясающие землю вверх и вниз, самые стремительные, они движутся со скоростью 5 километров в секунду. Волны S, колебания из стороны в сторону, лишь незначительно уступают в скорости продольным. Поверхностные волны медленнее, однако, именно они вызывают разрушения, когда удар приходится на город. В твердой породе эти волны распространяются так быстро, что их нельзя увидеть глазом. Однако рыхлые отложения(в уязвимых районах, например, в местах подсыпки грунта) волны Лява и Рэлея в состоянии превратить в текучие, так что можно видеть проходящие по ним, как по морю, волны. Поверхностные волны могут опрокидывать дома. И во время землетрясения 1995 года в Кобе (Япония), и в 1989 году в Сан- Франциско серьезней всего пострадали здания, построенные на насыпных грунтах.

Очаг землетрясения характеризуется интенсивностью сейсмического эффекта, выражаемого в баллах и магнитуде. В России используется 12-балльная шкала интенсивности Медведева-Шпонхойера-Карника. Согласно этой шкале, принята следующая градация интенсивности землетрясений (1.2.1.)

Таблица 1.2.1. 12-балльная шкала интенсивности

Интенсивность баллы

Общая характеристика

Основные признаки

Незаметное

Отмечается только приборами.

Очень слабое

Ощущается отдельными людьми, находящимися в здании в полном покое.

Ощущается немногими людьми в здании.

Умеренное

Ощущается многими. Заметны колебания висящих предметов.

Общий испуг, в зданиях легкие повреждения.

Паника, все выбегают из зданий. На улице некоторые люди теряют равновесие; падает штукатурка, в стенах появляются тонкие трещины, повреждаются Кирпичные дымовые трубы.

Разрушительное

Сквозные трещины в стенах, отмечается падение карнизов, дымовых труб Много раненых, отдельные жертвы.

Опустошительное

Разрушение стен, перекрытий, кровли во многих зданиях, Отдельные здания разрушаются до основания, много раненых и убитых.

Уничтожающее

Обрушение многих зданий, в грунтах образуются трещины до метра шириной. Много убитых и раненых.

Катастрофическое

Сплошные разрушения всех сооружений. Образуются трещины в грунтах со смещением по горизонтали и вертикали, оползни, обвалы, Изменение рельефа в больших размерах.

Иногда очаг землетрясения может быть и у поверхности Земли. В таких случаях, если землетрясение сильное, мосты, дороги, дома и другие сооружения оказываются разорванными и разрушенными .

Некоторым сильным землетрясениям предшествуют более слабые толчки, так называемые форштоки. Установлена последовательность событий, предшествовавших нескольким сильным землетрясениям в Новой Зеландии и Калифорнии. Во-первых, это тесно сгруппированная серия толчков примерно равной магнитуды, которая называется «предваряющим роем». За ним следует период, названный «предваряющим перерывом», в тече

ние которого нигде в окрестностях сейсмических толчков не наблюдается. Затем следует «главное землетрясение», сила которого зависит от величины роя землетрясений и продолжительности перерыва. Предполагается, что рой вызывается раскрытием трещин. Возможность прогнозирования землетрясений на основе этих представлений очевидна, однако имеются определенные трудности в выделении предваряющих роев из других сходных по характеру групповых землетрясений, и каких – либо бесспорных успехов в этой области не достигнуто. Положение и число землетрясений различной магнитуды может служить важным индикатором приближающегося сильного землетрясения. В Японии исследования этого явления признаны заслуживающими доверия, но надежным на 100% этот метод не станет никогда, ибо многие катастрофические землетрясения происходили без каких-либо предварительных толчков.

Известно, что очаги землетрясений не остаются на одном и том же месте, а перемещаются в пределах сейсмической зоны. Зная направления этого перемещения и его скорость, можно было бы предположить будущее землетрясение. К сожалению, такого рода перемещение очагов не происходит равномерно. В Японии скорость миграции очагов определена величиной 100 км в год. В районе Мацуширо в Японии регистрировалось множество слабых толчков – до 8000 в день. Через несколько лет оказалось, что очаги приближаются к поверхности и смещаются в южном направлении. Было вычислено вероятное местоположение очага следующего землетрясения и непосредственно к нему была пробурена скважина. Толчки прекратились.

Наблюдение за необычным поведением животных перед землетрясением признано очень важным, хотя отдельные специалисты утверждают, что речь идет о случайности. В ответе на вопрос, что же, воспринимают животные ученые не пришли к согласию. Представляются разные возможности: может быть с помощью органов слуха животные слышат подземные шумы или улавливают ультразвуковые сигналы перед толчками, либо организм животных реагирует на незначительные изменения барометрического давления или на слабые изменения магнитного поля. Возможно животные воспринимают слабые продольные волны, в то время как человек ощущает только поперечные.

Уровень грунтовых вод перед землетрясениями часто повышается или понижается, по-видимому, из-за напряженного состояния горных пород. Землетрясения могут влиять на уровень воды. Вода в скважинах может колебаться при прохождении сейсмических волн, даже если скважина находится далеко от эпицентра. Уровень воды в скважинах, находящихся вблизи эпицентра, часто испытывает стабильные изменения: в одних скважинах он становится выше, в других – ниже.

5. Трудности прогноза

Проблема предсказания землетрясения в настоящее время привлекает и ученых, и общественность как одна из серьезнейших и вместе с тем весьма актуальных. Мнения исследователей о возможности и путях решения проблемы далеко не однозначны.

Принципиальная основа решения проблемы прогноза землетрясений состоит в установленном лишь в последние30 лет фундаментальном факте, что перед землетрясением меняются физические (механические и электрические в первую очередь) свойства горных пород. Возникают аномалии разного рода геофизических полей: сейсмического, поля скоростей упругих волн, электрического, магнитного, аномалии в наклонах и деформациях поверхности, гидрогеологическом и газохимическом режиме и т.д. В сущности, на этом и основано проявление большинства предвестников. Всего сейчас известно свыше 300 предвестников, из них 10-15 неплохо изучены.

Прогноз землетрясения можно считать полным и практически значимым, если заблаговременно предсказываются три элемента будущего события: место, интенсивность (магнитуда) и время толчка. Карта сейсмического районирования, даже самая надежная, в лучшем случае дает сведения о возможной максимальной интенсивности землетрясений и средней частоте их повторения в какой-то зоне. Она содержит необходимые элементы прогноза, но самого прогноза обеспечить не в состоянии, так как не говорит о конкретных ожидаемых событиях. В ней отсутствует главнейший элемент прогноза – предсказания времени события.

Трудности в отношении прогноза времени землетрясения огромны. Да и предвидение места и интенсивности будущих подземных бурь – тоже еще далеко не решенная задача. До сих пор не разработаны принципиальные возможности и конкретные способы предвидения землетрясений в любой части сейсмически опасного региона с заданной точностью места и интенсивности в заданный отрезок времени. Поэтому долгое время идеальной будет, по-видимому, такая схема: в пределах сейсмогенного региона выделяется некая достаточно обширная область, где в течение нескольких лет или десятилетий можно ожидать крупное сейсмическое событие. Предшествующими исследованиями область ожидаемого события снижается, уточняются возможная сила толчка или его энергетическая характеристика – магнитуда и опасный период времени На следующей стадии разработок определяется место предстоящего толчка, а время ожидания события сокращается до нескольких дней и часов. В сущности, схема предусматривает три последовательные стадии прогноза – долгосрочный, среднесрочный и краткосрочный.

Заключение

Однако проблема «что делать с прогнозом» остается. Некоторые сейсмологи сочли бы свой долг выполненным, предав свое предупреждение по телеграфу премьер – министру, другие пытаются подключить социологов к исследованию вопроса о том, какова будет наиболее вероятная реакция общества на сделанное предупреждение. Простой гражданин едва ли будет обрадован сообщению, что городской совет предлагает ему посмотреть кинокартину на открытом воздухе в городском сквере, если он будет знать, что его дом по всей вероятности будет разрушен через один или два часа.

Нет сомнений, что социальные и экономические проблемы, которые возникнут в результате предупреждения, будут весьма серьезными, но что произойдет в действительности в большей степени, зависит от содержания предупреждения. В настоящее время представляется вероятным, что сейсмологи вначале будут делать заблаговременные предупреждения, возможно, на несколько лет вперед, а затем постепенно уточнять время, место и возможную магнитуду ожидаемого землетрясения по мере его приближения. Ведь стоит сделать предупреждение, и страховые премии, как и цены на недвижимость резко изменятся, может начаться миграция населения, новые строительные объекты будут заморожены, начнется безработица среди рабочих, занятых ремонтом окраской зданий. С другой стороны может возникнуть повышенный спрос на лагерное оборудование, средства борьбы с огнем, товары первой необходимости, за чем последуют их нехватка и повышение цен.

Землетрясения достигают иногда неистовой силы, и до сих пор не удается предсказать, когда и где они возникнут. Они так часто заставляли человека чувствовать себя беспомощным, что он стал постоянно бояться землетрясений. Во многих странах народная легенда связывает их с буйством гигантских чудищ, держащих на себе Землю.

Первые систематические и свободные от мистики представления о землетрясениях возникли в Греции. Жители ее часто были свидетелями извержения вулканов в Эгейском море и страдали от землетрясений, происходивших на берегах Средиземного моря и иногда сопровождавшихся «приливными» волнами (цунами). Многие древнегреческие философы предлагали для этих природных явлений физические объяснения. Например, Страбон заметил, что землетрясения чаще происходят на побережье, чем вдали от моря. Он, как и Аристотель, считал, что землетрясения вызываются сильнейшими подземными ветрами, воспламеняющими горючие вещества.

В начале нашего века во многих местах земного шара были созданы сейсмические станции. На них постоянно работают чувствительные сейсмографы, которые регистрируют слабые сейсмические волны, возникающие при удаленных землетрясениях. Например, Сан-Францисское землетрясение 1906 г. было отчетливо записано десятками станций в целом ряде стран за пределами США, в том числе в Японии, Италии и Германии.

Значение этой развернутой по всему миру сети сейсмографов состояло в том, что документация землетрясений уже больше не ограничивалась рассказами о субъективных ощущениях и визуально наблюдавшихся эффектах. Была разработана программа международного сотрудничества, которая предусматривала обмен записями землетрясений, что помогало бы точно определять местоположение очагов. Впервые возникла статистика времени возникновения землетрясений и их географического распределения.

Слово «цунами» произошло из японского языка и означает «гигантская волна в гавани». Возникают цунами на поверхности океана в результате извержения подводных вулканов или землетрясений. Водные массы начинают раскачиваться и постепенно приходят в медленное, но несущее в себе огромную энергию движение, которое из центра распространяется во все стороны. Длина волны, т.е. расстояние от одной водяной горы до другой, составляет от 150 до 600 км. До тех пор пока сейсмические волны имеют под собой большую глубину, их высота не превышает одного метра и они вполне безобидны. Чудовищная сила цунами обнаруживается лишь у берегов. Там волны замедляют свое движение, вода вздымается на невероятную высоту; чем круче берег, тем выше волны. Как при сильном отливе, вода сначала откатывается от берега, обнажая дно на целые километры. Затем приливает вновь уже за считанные минуты. Высота волн может достигать 60 метров, и несутся они на берег со скоростью 90 км/ч, все сметая на своем пути.

В дальнейшем возможность определять с одинаковой точностью местоположение землетрясений умеренной силы в любом районе земной поверхности сильно возросла в результате создания - по инициативе США - измерительного комплекса, названного Мировой сетью стандартизированных сейсмических станций (WWWSSN - World Standardized Seismograph Network).

Интенсивность землетрясения - на поверхности земли измеряется в баллах. В нашей стране принята международная М8К-64 (шкала Медведева, Шпонхойтера, Карника), в соответствии с которой землетрясения подразделяются по силе толчков на поверхности земли на 12 баллов. Условно их можно разделить на слабые (1-4 балла), сильные (5-8 баллов) и сильнейшие, или разрушительные (8 баллов и выше).

При 3-балльном землетрясении колебания отмечаются немногими людьми и только в помещении; при 5-ти балльном -- качаются висячие предметы и все, находящиеся в помещении отмечают толчки; при 6-балльном - появляются повреждения в зданиях; при 8-балльном - возникают трещины в стенах зданий, обваливаются карнизы и трубы; 10-балльное землетрясение сопровождается всеобщим уничтожением зданий и нарушением поверхности земли. В зависимости от силы подземных толчков могут разрушаться целые поселки и города.

1.2 Глубина очагов землетрясения

Землетрясение - это просто колебание грунта. Волны, которые вызывают землетрясение, называются сейсмическими волнами; подобно звуковым волнам, расходящимся от гонга при ударе по нему, сейсмические волны также излучаются из некоторого источника энергии, находящегося где-то в верхних слоях Земли. Хотя источник естественных землетрясений занимает некоторый объем горных пород, часто его удобно определять как точку, из которой расходятся сейсмические волны. Эту точку называют фокусом землетрясения. При естественных землетрясениях она, конечно, находится на некоторой глубине под земной поверхностью. При искусственных землетрясениях, таких как подземные ядерные взрывы, фокус расположен близко к поверхности. Точку на земной поверхности, расположенную непосредственно над фокусом землетрясения, называют эпицентром землетрясения.

Насколько глубоко в теле Земли находятся гипоцентры землетрясений? Одним из первых поразительных открытий, сделанных сейсмологами, было то, что, хотя фокусы многих землетрясений расположены на небольшой глубине, в некоторых районах их глубина составляет сотни километров. К таким районам относятся южноамериканские Анды, острова Тонга, Самоа, Новые Гебриды, Японское море, Индонезия, Антильские острова в Карибском море; во всех этих районах имеются глубоководные океанические желоба. В среднем частота землетрясений здесь резко убывает на глубинах более 200 км, но некоторые фокусы достигают даже глубин 700 км. Землетрясение, возникающие на глубинах от 70 до 300 км, весьма произвольно относят к категории промежуточных, а те, которые возникают на еще большей глубине, называют глубокофокусными. Промежуточные и глубокофокусные землетрясения происходят также и далеко от Тихоокеанского района: в Гиндукуше, Румынии, Эгейском море и под территорией Испании.

Мелкофокусные толчки - это те, очаги которых расположены непосредственно под земной поверхностью. Именно мелкофокусные землетрясения вызывают самые большие разрушения, и в общей сумме энергии, выделяющейся во всем мире во время землетрясений, вклад их составляет 3/4. В Калифорнии, например, все известные до сих пор землетрясения были мелкофокусными.

В большинстве случаев после умеренных или сильных мелкофокусных землетрясений в той же местности в течение нескольких часов, а то и нескольких месяцев отмечаются многочисленные землетрясения меньшей силы. Они называются афтершоками, и их число при действительно крупном землетрясении бывает иногда чрезвычайно большим.

Некоторым землетрясениям предшествуют предварительные толчки из той же очаговой области - форшоки; предполагается, что их можно использовать для предсказания главного толчка.

1.3 Типы землетрясений

Еще не так давно было широко распространено мнение, что причины землетрясений будут скрыты во мраке неизвестности, поскольку они возникают на глубинах, слишком далеких от сферы человеческих наблюдений.

Сегодня мы можем объяснить природу землетрясений и большую часть их видимых свойств с позиции физической теории. Согласно современным взглядам, землетрясения отражают процесс постоянного геологического преобразования нашей планеты. Рассмотрим теперь принятую в наше время теорию происхождения землетрясений и то, как она помогает нам глубже понять их природу и даже предсказывать их.

Первый шаг к восприятию новых взглядов заключается в признании тесной связи в расположении тех районов земного шара, которые наиболее подвержены землетрясениям, и геологически новых и активных областей Земли. Большинство землетрясений возникает на окраинах плит: поэтому мы делаем вывод, что те же глобальные геологические, или тектонические, силы, которые создают горы, рифтовые долины, срединно-океанические хребты и глубоководные желоба, те же самые силы представляют собой и первичную причину сильнейших землетрясений. Природа этих глобальных сил в настоящее время еще не совсем ясна, но несомненно, что их появление обусловлено температурными неоднородностями в теле Земли -неоднородностями, возникающими благодаря потере тепла путем излучения в окружающее пространство, с одной стороны, и благодаря добавлению тепла от распада радиоактивных элементов, содержащихся в горных породах, - с другой.

Полезно ввести квалификацию землетрясений по способу их образования. Больше всех распространены тектонические землетрясения. Они возникают, когда в горных породах под действием тех или иных геологических сил происходит разрыв. Тектонические землетрясения имеют важное научное значение для познания недр Земли и громадное практическое значение для человеческого общества, поскольку они представляют собой самое опасное природное явление.

Однако землетрясения возникают и от других причин. Подземные толчки другого типа сопровождают вулканические извержения. И в наше время многие люди все еще считают, что землетрясения связаны главным образом с вулканической деятельностью. Эта идея восходит к древнегреческим философам, которые обратили внимание на широкое распространение землетрясений и вулканов во многих районах Средиземноморья. Сегодня мы также выделяем вулканические землетрясения - те, которые происходят в сочетании с вулканической деятельностью, но считаем что как извержения вулканов, так и землетрясения являются результатом действия тектонических сил на горные породы, и они не обязательно возникают вместе.

Третью категорию образуют обвальные землетрясения. Это небольшие землетрясения, возникающие в районах, где есть подземные пустоты и горные выработки. Непосредственная причина колебаний грунта заключается при этом в обрушении кровли шахты или пещеры. Часто наблюдаемая разновидность этого явления - так называемые «горные удары». Они случаются, когда напряжения, возникающие вокруг горной выработки, заставляют большие массы горных пород резко, со взрывом, отделяться от ее забоя, возбуждающая сейсмические волны. Горные удары наблюдались, например, в Канаде; особенно часто они отмечаются в Южной Африке.

Большой интерес вызывает разновидность обвальных землетрясений, возникающих иногда при развитии крупных оползней. Например, в результате гигантского оползня, образовавшегося 25 апреля 1974 г. на реке Мантаро в Перу, возникли сейсмические волны, эквивалентные землетрясению умеренной силы.

Последний тип землетрясений - это искусственные, производимые человеком взрывные землетрясения, возникающие при обычных или ядерных взрывах. Подземные ядерные взрывы, производившиеся в течение последних десятилетий на ряде испытательных полигонов в разных местах земного шара, вызвали довольно значительные землетрясения. Когда в скважине глубоко под землей взрывается ядерное устройство, высвобождается огромное количество ядерной энергии. За миллионные доли секунды давление там подскакивает до величин, в тысячи раз превышающих атмосферное давление, а температура увеличивается в этом месте на миллионы градусов. Окружающие породы испаряются, образуя сферическую полость диаметром во много метров. Полость разрастается, пока кипящая порода испаряется с ее поверхности, а породы вокруг полости под действием ударной волны пронизываются мельчайшими трещинами.

За пределами этой трещиноватой зоны, размеры которой измеряются иногда сотнями метров, сжатие в горных породах приводят к возникновению сейсмических волн, распространяющихся во всех направлениях. Когда первая сейсмическая волна сжатия достигает поверхности, грунт выгибается вверх и, если энергия волны достаточно велика, может произойти выброс поверхностных и коренных пород в воздух образованием воронки. Если скважина глубокая, то поверхность только слегка растрескается и порода на мгновение поднимется, чтобы затем снова рухнуть на подстилающие слои.

Некоторые подземные ядерные взрывы были настолько сильны, что распространившиеся от них сейсмические волны прошли через внутренние области Земли и были записаны на дальних сейсмических станциях с амплитудой, эквивалентной волнам землетрясений с магнитурой 7 по шкале Рихтера. В некоторых случаях эти волны поколебали здания в отдаленных городах.

1.4 Признаки готовящегося землетрясения

Прежде всего, особый интерес сейсмологов привлекают предвестниковые изменения скорости продольных сейсмических, волн, поскольку сейсмологические станции специально сконструированы так, чтобы точно отмечать время прихода волн.

Второй из параметров, которые могут быть использованы для прогноза, - это изменение уровня земной поверхности, например наклон поверхности грунта в сейсмических районах.

Третий параметр - выделение инертного газа радона в атмосферу вдоль зон активных разломов, особенно из глубоких скважин.

Четвертый параметр, привлекающий большое внимание, электропроводимость пород в зоне подготовки землетрясения. Из лабораторных экспериментов, проведенных на образцах горных пород, известно, что электрическое сопротивление водонасыщенной породы, например, гранита, резко меняется перед тем, как порода начинает разрушаться под действием высокого давления.

Пятый параметр - вариации уровня сейсмической активности. По этому параметру имеется больше сведений, чем по четырем другим, но полученные до сих пор результаты не позволяют сделать определенных выводов. Регистрируются сильные изменения нормального фона сейсмической активности - обычно это увеличение частоты слабых землетрясений.

Рассмотрим эти пять стадий. Первая стадия состоит в медленном накоплении упругой деформации благодаря действию главных тектонических сил. В течение этого периода все сейсмические параметры характеризуются нормальными значениями. На второй стадии в коровых породах зон разлома развиваются трещины что приводит к общему возрастанию объема - к дилатансии. Когда открываются трещины, скорость продольных волн, проходящих через такую раздувающуюся область, падает, дневная поверхность при этом воздымается, выделяется газ радон, уменьшается электрическое сопротивление может измениться частота микроземлетрясений, отмечаемых на данной площади. На третьей стадии происходит диффузия воды из окружающих пород в поры и микротрещины, что создаете условия неустойчивости. По мере заполнения трещин водой скорость проходящих через данный район Р-волн начинает снова возрастать, поднятие поверхности грунта прекращается, выделение радона из свежих трещин затухает, а электрическое сопротивление продолжает уменьшаться. Четвертая стадия соответствует моменту самого землетрясения, после чего сразу наступает пятая стадия, когда на площади возникают многочисленные афтершоки.

Есть сообщения о погибших. Предупреждение об угрозе цунами объявлено для большой части тихоокеанского региона. Можно ли избежать человеческих жертв при подобных природных катаклизмах? На вопросы Радио Свобода отвечает заведующий лабораторией цунами Институт океанологии РАН им. П.П.Ширшова:

– Нынешнее цунами, пожалуй, одно из сильнейших в Тихом океане за последние 30-40 лет. В Японии волна достигла 10 метров – это то, что известно достоверно. Но, возможно, была больше. На Курилах прошла эвакуация населения, эвакуировано более 11 тыс. человек.

– Есть какие-то способы минимизировать последствия такого стихийного бедствия?

– Да. Незадолго до сегодняшнего цунами, пару месяцев назад, была установлена глубоководная станция где-то напротив острова Итуруп. И вот она сработала, я как раз сейчас смотрю эти записи. На основании этих записей и других американских записей Служба цунами на Сахалине сумела быстро выработать прогноз цунами – и население было эвакуировано вовремя. В Японии, конечно, это сделать сложнее, потому что там время пробега волны очень короткое. Для жителей Хонсю всё, конечно, более трагично.

– Как быстро приближается цунами обычно?

– В открытом океане оно идет с большой скоростью – порядка 800 км/час, то есть со скоростью самолета. Думаю, разрушения будут. Я очень надеюсь, что суда вовремя ушли из портов и вышли в открытый океан… Прежде всего, следует опасаться за Шикотан, Южно-Курильск, Кунашир. А вообще главная опасность, прежде всего, угрожает портовым сооружениям и судам.

– В какой степени японское побережье подготовлено к такого рода стихийным бедствиям? Япония славится все-таки высокими технологиями, высокоразвитой промышленностью... Сейсмографическая служба, очевидно, в этой стране налажена очень основательно?

– Подготовлены японцы действительно хорошо. Но когда речь идет о столь коротком времени пробега волны – всего 5-10 минут… За это время никакая служба не способна людей увезти далеко. Это практически невозможно. Обычно мы закладываем на эвакуацию населения 15-20 минут. Вот такие нормативы существуют, и то не всегда в них можно уложиться.

– Насколько вероятно повторение подземных толчков?

– Подземные толчки будут, конечно, повторяться в этом районе еще, по крайней мере, полгода и даже год. Другое дело, будут ли они достигать такой силы, чтобы вызывать подобные волны и разрушения. В принципе, толчки должны ослабляться, затухать, если происходит сильнейший разлом. В Японии произошел разлом, и он продолжает еще двигаться некоторое время.

Кстати, нынешнее землетрясение и цунами отмечены таким не очень частым событием, как форшок (сейсмический толчок, предшествующий главному сейсмическому толчку землетрясения. – РС ). По-моему, 9 марта в этом же районе было зафиксировано несильное землетрясение и очень небольшое цунами, около полуметра.

Этот и другие важные материалы итогового выпуска программы "Время Свободы" читайте на странице

© 2024 Helperlife - Строительный портал