Вконтакте Facebook Twitter Лента RSS

Галогеновые соединения. Применение галогенов и их соединений. Реакции замещения с галогенами

Галогены (от греч. halos - соль и genes - образующий) - элементы главной подгруппы VII группы периодической системы: фтор, хлор, бром, йод, астат.

В свободном состоянии галогены образуют вещества, состоящие из двухатомных молекул F 2 , Cl 2 , Br 2 , I 2 .

НАХОЖДЕНИЕ В ПРИРОДЕ

Галогены в природе находятся только в виде соединений.

Фтор встречается исключительно в виде солей, рассеянных по различным горным породам. Общее содержание фтора в земной коре составляет 0,02% атомов. Практическое значение имеют минералы фтора: CaF 2 - плавиковый шпат, Na 2 AlF 6 - криолит, Ca 5 F(PO 4) 3 - фторапатит.


Важнейшим природным соединением хлора является хлорид натрия (галит), который служит основным сырьем для получения других соединений хлора. Главная масса хлорида натрия находится в воде морей и океанов. Воды многих озер также содержат значительное количество NaCl – таковы, например озера Эльтон и Баскунчак. Встречаются другие соединения хлора, например, KСl - сильвин, MgCl 2 *KCl*6HO - карналлит, KCl*NaCl - сильвинит.

Бром встречается в природе в виде солей натрия и калия вместе с солями хлора, а также в воде соленых озер и морей. Бромиды металлов содержатся в морской воде. В подземных буровых водах, имеющих промышленное значение, содержание брома составляет от 170 до700мг/л. Общее содержание брома в земной коре 3*10-5% атомов.

Соединения йода имеются в морской воде, но в столь малых количествах, что непосредственное выделение их из воды очень затруднительно. Однако существуют некоторые водоросли, которые накапливают йод в своих тканях, например ламинарии. Зола этих водорослей служит сырьем для получения йода. Значительное количество йода(от 10 до 50мг/л.) содержатся в подземных буровых водах. Содержание йода в земной коре 4*10-6 % атомов. Существуют незначительные залежи солей йода - KIO 3 и KIO 4 - В Чили и Боливии.

Общая масса астата на земном шаре по оценкам не превышает 30 г.

Таблица. Электронное строение и некоторые свойства атомов и молекул галогенов

Символ

Элемента

Порядковый

Номер

Строение

внешнего

электронного

слоя

2s 2 2p 5

3s 2 3p 5

4s 2 4p 5

5 s 2 5 p 5

6 s 2 6 p 5

Относительная электро

отрицательность (ЭО)

4,0

3,0

2,8

2,5

~2,2

Радиус атома, нм

0,064

0,099

0,114

0,133

Степени

окисления

1, +1, +3,
+5, +7

Агрегатное состояние

Бледно-зел.
газ

Зел-желт.
газ

Бурая
жидкость

Темн-фиол.
кристаллы

Черные
кристаллы

t °пл.(°С)

219

101

114

227

t °кип.(°С)

183

185

317

ρ (г / см 3)

1,51

1,57

3,14

4,93

Растворимость в воде

(г / 100 г воды)

реагирует
с водой

2,5: 1
по объему

3,5

0,02

Название

Схема строения атома

Электронная формула

Фтор

F +9) 2) 7

… 2s 2 2p 5

Хлор

Cl +17) 2) 8) 7

… 3s 2 3p 5

Бром

Br +35) 2) 8) 18) 7

… 4s 2 4p 5

Йод

I +53) 2) 8) 18) 18) 7

… 5s 2 5p 5

1) Общая электронная конфигурация внешнего энергетического уровня - nS 2 nP 5 .

2) С возрастанием порядкового номера элементов увеличиваются радиусы атомов, уменьшается электроотрицательность, ослабевают неметаллические свойства (увеличиваются металлические свойства); галогены - сильные окислители, окислительная способность элементов уменьшается с увеличением атомной массы.

3) С увеличением атомной массы окраска становится более темной, возрастают температуры плавления и кипения, а также плотность.

ПОЛУЧЕНИЕ ГАЛОГЕНОВ

1. Электролиз растворов и расплавов галогенидов:

2NaCl + 2H 2 O = Cl 2 + H 2 + 2NaOH

2 KF = 2 K + F 2 (единственный способ полученияя F 2 )

2. Окисление галогенводородов:

2 KMnO 4 +16 HCl =2 KCl +2 MnCl 2 +5 Cl 2 +8 H 2 O – Лабораторный способ получения хлора

14HBr+K 2 Cr 2 O 7 =2KBr+2CrBr 3 +3Br 2 +7H 2 O

MnO 2 + 4 HHal = MnHal 2 + Hal 2 + 2 H 2 O – Лабораторный - (Для получения хлора, брома, иода)

3. Промышленный способ – окисление хлором (для брома и йода):

2KBr+Cl 2 =2KCl+Br 2

2KI + Cl 2 =2KCl + I 2

Химические свойства

Рассмотрим свойства галогенов на примере хлора:

1.Взаимодействие с металлами

2K + Cl 2 →2KCl опыт

Mg + Cl 2 →MgCl 2

2.Реакции с неметаллами

H 2 + Cl 2 → 2HCl

3.Взаимодействие со щелочами на холоду

2NaOH + Cl 2 → NaCl + NaClO + H 2 O

4.Взаимодействие со щелочами при нагревании

6NaOH + 3Cl 2 → 5NaCl + NaClO 3 + 3H 2 O

5.Вытеснение менее активных галогенов из галогенидов

2KBr + Cl 2 → 2KCl + Br 2

6. С водой

H 2 O + Cl 2 ↔ HCl + HClO (хлорная вода)

ПРИМЕНЕНИЕ ГАЛОГЕНОВ

Фтор

широко применяют как фторирующий агент при получении различных фторидов (SF 6 , BF 3 , WF 6 и других), в том числе и соединений инертных газов ксенона (Xe) и криптона (Kr). Гексафторид урана UF 6 применяется для разделения изотопов урана (U). Фтор используют в производстве тефлона, других фторопластов, фторкаучуков, фторсодержащих органических веществ и материалов, которые широко применяют в технике, особенно в тех случаях, когда требуется устойчивость к агрессивным средам, высокой температуре и т. п.

Хлор

применяют в производстве хлорсодержащих органических соединений (60-75%), неорганических веществ (10-20%), для отбелки целлюлозы и тканей (5-15%), для санитарных нужд и обеззараживания (хлорирования) воды.

Бром

бром применяют при получении ряда неорганических и органических веществ, в аналитической химии. Соединения брома используют в качестве топливных добавок, пестицидов, ингибиторов горения, а также в фотографии. Широко известны содержащие бром лекарственные препараты. Следует отметить, что расхожее выражение: “врач прописал бром по столовой ложке после еды” означает, разумеется, лишь то, что прописан водный раствор бромида натрия (или калия), а не чистый бром. Успокаивающее действие бромистых препаратов основано на их способности усиливать процессы торможения в центральной нервной системе.

Иод

иод применяют для получения высокочистого титана (Ti), циркония (Zr), гафния (Hf), ниобия (Nb) и других металлов (так называемое иодидное рафинирование металлов). При иодидном рафинировании исходный металл с примесями переводят в форму летучих иодидов, а затем полученные иодиды разлагают на раскаленной тонкой нити. Нить изготовлена из заранее очищенного металла, который подвергают рафинированию. Ее температуру подбирают такой, чтобы на нити могло происходить разложение только иодида очищаемого металла, а остальные иодиды оставались в паровой фазе.
Используют иод и в иодных лампах накаливания, имеющих вольфрамовую спираль и характеризующихся большим сроком службы. Как правило, в таких лампах пары иода находятся в среде тяжелого инертного газа ксенона (Xe) (лампы часто называют ксеноновыми) и реагируют с атомами вольфрама (W), испаряющимися с нагретой спирали. Образуется летучий в этих условиях иодид, который рано или поздно оказывается вновь вблизи спирали. Происходит немедленное разложение иодида, и освободившийся вольфрам (W) вновь оказывается на спирали. Иод применяют также в пищевых добавках, красителях, катализаторах, в фотографии, в аналитической химии.

At, открытый в 1940 г.
Электронные конфигурации галогенов: F - 1s 2 2s 2 2p 5 ; Cl - 1s 2 2s 2 2p 6 3s 2 3p 5 ; Br - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 ; I - 1s 2 s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 5 .

Распределение электронов по энергетическим уровням галогенов в зависимости от заряда ядра Таблица 11

Галоген

Атомный вес

Заряд ядра

Число электронов

Величина атомного радиуса,Å

18,98

35,45

79,90

126,90

0,71

0,99

1,14

1,33

Распределение по орбиталям электронов внешнего электронного слоя у всех галогенов однотипное

Имеют много общего в строении атомов и молекул. У них завершается застройка р -оболочки внешнего слоя, поэтому все они принадлежат к числу р-элементов. Внешнему электронному слою атомов галогенов недостает до завершения одного электрона, поэтому электроотрицательность у этих элементов выражена ярко и в окислительно-восстановительных реакциях они ведут себя в основном как окислители.
Молекулы галогенов состоят из д вух атомов (F2, Сl2, Вr2, l2), соединенных между собой посредством ковалентной неполярной связи. Между атомами в молекулах галогенов возникает одна общая электронная пара. Это свидетельствует о том, что в простых веществах данные элементы одновалентны. Кристаллическая решетка галогенов молекулярного типа.
Атомы разных галогенов различаются числом электронных слоев, в связи с чем радиусы атомов галогенов различны (табл. 11). С возрастанием зарядов ядер радиусы атомов увеличиваются, что ведет к постепенному уменьшению величины электроотрицательности от фтора к иоду и снижению неметалличности свойств. Наиболее ярко выраженным неметаллом среди галогенов является фтор, наименее ярким - .

■ 1. Как меняется величина атомного радиуса в зависимости от возрастания заряда ядра атома?
2. Какого типа в молекулах галогенов?
3. Какого типа кристаллическая решетка у галогенов?
4. Какова галогенов в свободном состоянии?
5. Почему при образовании молекулы галогена между атомами возникает лишь одна электронная пара?
6. Как меняется величина электроотрицательности с возрастанием радиусов атомов?

Физические свойства галогенов

Все свойства галогенов, как физические, так и химические, зависят от строения атомов элементов. Эти свойства различных галогенов во многом сходны, но в же время каждому галогену присущ ряд особенностей.
Фтор - газ светло-зеленого цвета, отличающийся чрезвычайно ядовитыми свойствами. Температура кипения фтора -188°, температура затвердевания -218°. Плотность 1,11 г/смъ.
- газ желто-зеленого цвета. Он также ядовит, имеет резкий, удушливый, неприятный запах. Хлор тяжелее воздуха, сравнительно хорошо растворяется в воде (на 1 объем воды 2 объема хлора), образуя хлорную воду; Cl2agi при температуре- 34° превращается в жидкость, а при- 101° затвердевает. Плотность 1,568 г/см3..
-единственный жидкий неметалл. Это вещество красно-бурого цвета, тяжелое, летучее. Сосуд, в котором находится бром, всегда окрашен его парами в красно-бурый цвет.
Бром имеет тяжелый неприятный запах («бром» в переводе на русский язык значит «зловонный»). В воде растворяется плохо, образуя бромную воду Br2aq. Гораздо лучше бром растворяется в органических растворителях - бензоле, толуоле, хлороформе.
Если к бромной воде прилить небольшое количество бензола и хорошенько взболтать, после расслаивания жидкостей можно заметить, как окраска бромной воды исчезает, а собравшийся наверху бензол окрашивается растворенным бромом в ярко-оранжевый цвет. Это объясняется тем, что бензол извлек из воды бром вследствие его лучшей растворимости в бензоле.
Хранят бром в склянках с притертыми пробками и притертыми колпаками. Резиновые пробки для работы с бромом, как и для работы с хлором, неприменимы, так-как они быстро разъедаются. Бром намного тяжелее воды (плотность 3,12 г/см 3). Температура кипения брома 63°, температура затвердевания -7,3°.
- вещество кристаллическое, темно-серого цвета, в парах - фиолетового. Плотность йода 4,93 г/см3, температура плавления 113°, температура кипения 184°. Довести до плавления, а тем более до кипения при обычных условиях не удается, так как уже при слабом нагревании он из твердого состояния сразу переходит в пар -возгоняется. Переход из твердого состояния в газообразное, минуя жидкое, и обратно называется возгонкой. Это свойство характерно не только для йода, но и для некоторых других веществ. Его удобно использовать для очистки веществ от примесей.
Иод плохо растворяется в воде. Окраска йодной воды I2aq всегда светло-желтая. Но зато он прекрасно растворяется в спирте. Этим пользуются для приготовления 5-10% раствора иода в спирте, называемого йодной настойкой. Иод растворяется также в бензоле, толуоле, эфире, сероуглероде и других органических растворителях. Интересно, что иод очень хорошо растворяется в растворе собственных солей, например в йодистом калии. Этот раствор, называемый раствором Люголя, широко применяется в клинических лабораториях.
Если в йодную воду I2aq добавить немного бензола, при встряхивании на поверхности также образуется окрашенное бензольное кольцо, но только малинового цвета.

■ 7. Как меняется интенсивность окраски галогенов с возрастанием зарядов ядер?
8. Какое название имеют растворы хлора, брома и иода в воде?
9. Как меняется плотность галогенов с возрастанием зарядов ядер?

10. Составьте и заполните таблицу «Физические свойства галогенов» по следующему образцу:
11. Как объяснить с точки зрения строения кристаллической решетки низкие температуры плавления и кипения галогенов?
12. Какова относительная плотность фтора и хлора по воздуху и водороду? Если вы не знаете, что такое относительная плотность газов, как она определяется и как ею пользоваться при расчетах, обратитесь к приложению II, стр. 387. После этого вы сможете ответить на вопрос.
13. Какой объем займут 20 кг хлора при нормальных условиях? Если вы забыли, как вычислять объем газа при нормальных условиях, обратитесь к .

Физиологическое действие галогенов

Все ядовиты по своему физиологическому действию. Особенно ядовит фтор: при вдыхании в небольших количествах он вызывает отек легких, в больших - разрушение легочной ткани и смерть.
Хлор - также вещество очень ядовитое, хотя в несколько меньшей степени. Во время первой мировой войны он применялся как боевое отравляющее вещество, потому что он тяжелее воздуха и хорошо удерживается над поверхностью земли, особенно при безветренной погоде. Предельно допустимая концентрация свободного хлора в воздухе 0,001 мг/л.
Хроническое отравление хлором вызывает изменение цвета лица, легочные и бронхиальные заболевания. При отравлениях хлором в качестве противоядия нужно применять смесь паров спирта с эфиром, а также водяных паров с примесью нашатырного спирта, причем предварительно обязательно вынести пострадавшего на свежий воздух.
В небольших же количествах хлор может излечивать заболевания верхних дыхательных путей, так как губительно действует на бактерии. Благодаря дезинфицирующему действию хлор применяется для обеззараживания водопроводной воды.
Пары брома вызывают удушье. Ядовит и жидкий бром, причиняющий при попадании на кожу сильные ожоги. Переливать бром из одного сосуда в другой рекомендуется в резиновых перчатках и под тягой.
При попадании на кожу бром следует смывать органическим растворителем - бензолом или четыреххлористым углеродом, протирая пораженное место ватой, смоченной этими растворителями. При смывании брома водой нередко ожога избежать не удается.

Иод наименее ядовит из всех галогенов. Вдыхание паров иода при его нагревании может вызвать отравление, но работать с парообразным иодом приходится редко, например при очистке его возгонкой. Кристаллический иод руками брать не следует, так как при попадании на кожу он вызывает появление характерных желтых пятен. Все работы с галогенами следует производить в вытяжном шкафу.
Вместе с тем галогены являются жизненно важными элементами. Хлор в виде поваренной соли постоянно применяется в пищу, а также входит в состав зеленого растений - хлорофилла. Недостаток соединений фтора в питьевой воде вызывает разрушение зубов. Иод необходим всем живым организмам, как растительным, так и животным. Он участвует в регулировании обмена веществ. В организме человека иод сосредоточен главным образом в щитовидной железе и участвует в образовании ее гормона. Недостаток иода вызывает болезненные изменения щитовидной железы. Для предотвращения заболевания в пищу в очень небольших количествах добавляют иод, разводя несколько капель йодной настойки на стакан воды, но чаще в виде иодида натрия и иодида калия.

Запишите в тетрадь меры техники безопасности в работе с галогенами и первой помощи при отравлениях.

Химические свойства галогенов

По характеру химических свойств, как отмечено выше, все галогены являются типичными неметаллами, обладающими значительной электроотрицательностью. Наиболее электроотрицательным элементом, обладающим наибольшей неметаллической активностью, является фтор, наименее активен иод.

Рис. 21. Горение водорода в хлоре. 1- хлор 2-

Взаимодействие галогенов с простыми веществами. Проследить уменьшение химической активности от фтора к хлору можно на примерах разных реакций. Особенно интересно взаимодействие разных галогенов с водородом. Условия реакций у них при этом разные.
Так, фтор реагирует с водородом со вз рывом даже в темноте. При этом образуется фтористый по уравнению.
H2 + F2 = 2HF

Фтористый является наиболее прочным соединением среди галогеноводородов.
Взаимодействие хлора с водородом происходит со взрывом только на свету:
Сl2+ Н2 = 2НСl
Если же поджечь струю водорода в атмосфере хлора, то он будет сгорать спокойно бесцветным пламенем (рис. 21).

С водородом бром образует бромистый водород.
Вr2 + Н2 = 2НВг
Процесс идет при слабом нагревании.
Иод с водородом реагирует только при нагревании с образованием йодистого водорода:
Н2 + I2 = 2НI
Однако это соединение весьма неустойчивое и легко распадается с образованием водорода и иода. Во всех этих случаях галогены ведут себя как окислители. Галогено-водороды при растворении в воде образуют кислоты.

Окислительные свойства галогены проявляют и при взаимодействии с металлами, которое протекает обычно очень активно.
Фтор реагирует практически почти со всеми металлами. Легко проследить взаимодействие х л о р а с металлами. Многие в хлоре горят, например самовоспламеняется (рис. 22). Другие реагируют с хлором при нагревании, например (рис. 23).
2Na + Сl2 = 2NaCl
Если могут иметь различную степень окисления, то при реакции с хлором они обычно проявляют высшую.

Рис. 22.

Например.
2Fe + 3Сl2 = 2FeCl3

Сu + Сl2 = СuСl2

Здесь в реакции с хлором проявляет степень окисления, равную +3 - Fe +3 , а равную +2- Cu +2 . Во всех приведенных случаях хлор ведет себя как .

Бурно реагирует с металлами и бром. Если насыпать в пробирку с жидким бромом немного алюминиевых опилок, то они сгорают в броме с образованием бромистого алюминия, что сопровождается выделением бурых паров брома и снопом искр. Реакция идет по следующему уравнению:
2Аl + ЗВr2 = 2АlВr3

Опыт производится в приборе, изображенном на рис. 24. Длинная трубка 1 выполняет роль воздушного холодильника. Горят в броме также , а с бромом дает сильный взрыв.

Рис. 22.

Иод также реагирует с металлами, образуя йодистые соли. Особенно интересно происходит реакция алюминия с иодом. Для этого кристаллы иода растирают в ступке до образования мелкого порошка, а затем на асбестированной сетке смешивают иод с алюминиевой пылью. Смесь, посуда и материалы должны быть совершенно сухими. Если после этого добавить к смеси каплю воды, которая является катализатором в этом процессе, то смесь воспламеняется и горит, выделяя фиолетовые клубы паров иода
2Аl + 3I2 = 2АlI3

Следует отметить, что иод реагирует с металлами труднее, чем хлор и бром.
В отличие от большинства других простых веществ галогены в непосредственное взаимодействие с кислородом не вступают, так как и галогены обладают близкими значениями электроотрицательности. Вместе с тем галогенов косвенным путем получены и существуют.

Рис. 23.
1- металлический
2- хлоркальцивая трубка
3- хлор
4- едкий

14. Докажите путем составления электронного баланса, что в реакциях с водородом и металлами галогены ведут себя как окислители. Обоснуйте такое поведение строением атома галогенов.

15. Какой объем хлористого водорода может быть получен при реакции с водородом 20 л хлора? (эта задача решается целиком в объемах).
16. Для того чтобы образующийся хлористый водород не был загрязнен хлором, при взаимодействии хлора с водородом последнего берут на 5% больше требуемого количества. Рассчитайте, какой объем водорода следует взять для получения 50 л хлористого водорода.

Галогены в природе Галогены, вследствие их огромной химической активности, находятся в природе исключительно в виде соединений, главным образом в виде...

ОПРЕДЕЛЕНИЕ

Галогены – элементы VIIА группы – фтор (F), хлор (Cl), бром (Br) и йод (I).

Электронная конфигурация внешнего энергетического уровня галогенов ns 2 np 5 . Поскольку, до завершения энергетического уровня галогенам не хватает всего 1-го электрона, в ОВР они чаще всего проявляют свойства окислителей. Степени окисления галогенов: от «-1» до «+7». Единственный элемент группы галогенов – фтор – проявляет только одну степень окисления «-1» и является самым электроотрицательным элементом.

Молекулы галогенов двухатомны: F 2 , Cl 2 , Br 2 , I 2 . С ростом заряда ядра атома химического элемента, т.е. при переходе от фтора к йоду окислительная способность галогенов снижается, что подтверждается способностью вытеснения нижестоящих галогенов вышестоящими из галогеноводородных кислот и их солей:

Br 2 + 2HI = I 2 + 2HBr

Cl 2 + 2KBr = Br 2 + 2KCl

Физические свойства галогенов

При н.у. фтор – газ светло-желтого цвета, обладающий резким запахом. Ядовит. Хлор – газ светло-зеленого цвета, также как и фтор имеет резкий запах. Сильно ядовит. При повышенном давлении и комнатной температуре легко переходит в жидкое состояние. Бром – тяжелая жидкость красно-бурого цвета с характерным неприятным резким запахом. Жидкий бром, а также его пары сильно ядовиты. Бром плохо растворяется в воде и хорощо в неполярных растворителях. Йод – твердое вещество темно-серого цвета с металлическим блеском. Пары йода имеют фиолетовый цвет. Йод легко возгоняется, т.е. переходит в газообразное состояние из твердого, при этом минуя жидкое состояние.

Получение галогенов

Галогены можно получить при электролизе растворов или расплавов галогенидов:

MgCl 2 = Mg + Cl 2 (расплав)

Наиболее часто галогены получают по реакции окисления галогенводородных кислот:

MnO 2 + 4HCl = MnCl 2 + Cl 2 +2H 2 O

K 2 Cr 2 O 7 + 14HCl = 3Cl 2 + 2KCl +2CrCl 3 +7H 2 O

2KMnO 4 +16HCl = 2MnCl 2 +5Cl 2 +8H 2 O +2KCl

Химические свойства галогенов

Наибольшей химической активностью обладает фтор. Большинство химических элементов даже при комнатной температуре взаимодействует с фтором, выделяя большое количество теплоты. Во фторе горит даже вода:

2H 2 O + 2F 2 =4HF + O 2

Свободный хлор менее реакционноспособен, чем фтор. Он непосредственно не реагирует с кислородом, азотом и благородными газами. Со всеми остальными веществами он взаимодействует подобно фтору:

2Fe + Cl 2 = 2FeCl 3

2P + 5Cl 2 = 2PCl 5

При взаимодействии хлора с водой на холоде происходит обратимая реакция:

Cl 2 + H 2 O↔HCl +HClO

Смесь, представляющую собой продукты реакции, называют хлорной водой.

При взаимодействии хлора с щелочами на холоде образуются смеси хлоридов и гипохлоритов:

Cl 2 + Ca(OH) 2 = Ca(Cl)OCl + H 2 O

При растворении хлора в горячем растворе щелочи происходит реакция:

3Cl 2 + 6KOH=5KCl +KClO 3 +3H 2 O

Бром, как и хлор растворяется в воде и, частично реагируя с ней, образует так называемую «бромную воду», тогда как йод в воде практически нерастворим.

Йод существенно отличается по химической активности от остальных галогенов. Он не реагирует с большинством неметаллов, а с металлами медленно реагирует только при нагревании. Взаимодействие йода с водородом происходит только при сильном нагревании, реакция является эндотермической и сильно обратимой:

Н 2 + I 2 = 2HI - 53 кДж.

Примеры решения задач

ПРИМЕР 1

Вам могут быть интересны следующие материалы
© 2024 Helperlife - Строительный портал
Задание Рассчитайте объем хлора (н. у.), который прореагировал с иодидом калия, если при этом образовался йод массой 508 г
Решение Запишем уравнение реакции:

Cl 2 + 2KI = I 2 + 2KCl

Найдем количество вещества образовавшегося йода:

v(I 2)=m(I 2)/M(I 2)

v(I 2)=508/254=2 моль

По уравнению реакции количество вещества хлора.

Фтор может быть только окислителем, что легко объяснить его положением в периодической системе химических элементов Д. И. Менделеева. Это сильнейший окислитель, окисляющий даже некоторые благородные газы:

2F 2 +Хе=XeF 4

Высокую химическую активность фтора следует объяснить

о на разрушение молекулы фтора требуется намного меньше энергии, чем ее выделяется при образовании новых связей.

Так, вследствие малого радиуса атома фтора неподеленные электронные пары в молекуле фтора взаимно сталкиваются и ослабевает

Галогены взаимодействуют почти со всеми простыми веществами.

1. Наиболее энергично протекает реакция с металлами. При нагревании фтор взаимодействует со всеми металлами (в том числе с золотом и платиной); на холоду реагирует с щелочными металлами, свинцом, железом. С медью, никелем реакция на холоду не протекает, поскольку на поверхности металла образуется защитный слой фторида, предохраняющий металл от дальнейшего окисления.

Хлор энергично реагирует с щелочными металлами, а с медью, железом и оловом реакция протекает при нагревании. Аналогично ведут себя бром и иод.

Взаимодействие галогенов с металлами является экзотерми­ческим процессом и может быть выражена уравнением:

2М+nHaI 2 =2МНаI DH<0

Галогениды металлов являются типичными солями.

Галогены в этой реакции проявляют сильные окислительные свойства. При этом атомы металла отдают электроны, а атомы галогена принимают, например:

2. При обычных условиях фтор реагирует с водородом в тем­ноте со взрывом. Взаимодействие хлора с водородом протекает на ярком солнечном свету.

Бром и водород взаимодействуют только при нагревании, а иод с водородом реагирует при сильном нагревании (до 350°С), но этот процесс обратимый.

Н 2 +Сl 2 =2НСl Н 2 +Br 2 =2НBr

Н 2 +I 2 « 350° 2HI

Галоген в данной реакции является окислителем.

Как показали исследования, реакция взаимодействия водо­рода с хлором на свету имеет следующий механизм.

Молекула Сl 2 поглощает квант света hv и распадается на неор­ганические радикалы Сl . . Это служит началом реакции (первона­чальное возбуждение реакции). Затем она продолжается сама со­бой. Радикал хлора Сl . реагирует с молекулой водорода. При этом образуется радикал водорода Н. и НСl. В свою очередь радикал водорода Н. реагирует с молекулой Сl 2 , образуя НСl и Сl . и т.д.

Сl 2 +hv=Сl . +Сl .

Сl . +Н 2 =НСl+Н.

Н. +Сl 2 =НСl+С1 .

Первоначальное возбуждение вызвало цепь последователь­ных реакций. Такие реакции называются цепными. В итоге полу­чается хлороводород.

3. Галогены с кислородом и азотом непосредственно не взаи­модействуют.

4. Хорошо реагируют галогены с другими неметаллами, на­пример:

2Р+3Сl 2 =2РСl 3 2Р+5Сl 2 =2РСl 5 Si+2F 2 =SiF 4

Галогены (кроме фтора) не реагируют с инертными газами. Химическая активность брома и иода по отношению к неме­таллам выражена слабее, чем у фтора и хлора.

Во всех приведенных реакциях галогены проявляют окисли­тельные свойства.

Взаимодействие галогенов со сложными веществами. 5. С водой.

Фтор реагирует с водой со взрывом с образованием атомарного кислорода:

H 2 O+F 2 =2HF+O

Остальные галогены реагируют с водой по следующей схеме:

Гал 0 2 +Н 2 О«НГал -1 +НГал +1 О

Эта реакция является реакцией диспропорционирования, когда галоген является одновременно и восстановителем, и окис­лителем, например:

Сl 2 +Н 2 O«НСl+НСlO

Cl 2 +H 2 O«H + +Cl - +HClO

Сl°+1e - ®Сl - Cl°-1e - ®Сl +

где НСl - сильная соляная кислоты; НСlO - слабая хлорноватис­тая кислота

6. Галогены способны отнимать водород от других веществ, скипидар+С1 2 = НС1+углерод

Хлор замещает водород в предельных углеводородах: СН 4 +Сl 2 =СН 3 Сl+НСl

и присоединяется к непредельным соединениям:

С 2 Н 4 +Сl 2 =С 2 Н 4 Сl 2

7. Реакционная способность галогенов снижается в ряду F-Сl - Br - I. Поэтому предыдущий элемент вытесняет последую­щий из кислот типа НГ (Г - галоген) и их солей. В этом случае активность убывает: F 2 >Сl 2 >Br 2 >I 2

Применение

Хлор применяют для обеззараживания питьевой воды, отбел­ки тканей и бумажной массы. Большие количества его расходу­ются для получения соляной кислоты, хлорной извести и др. Фтор нашел широкое применение в синтезе полимерных материалов - фторопластов, обладающих высокой химической стойкостью, а также в качестве окислителя ракетного топлива. Некоторые со­единения фтора используют в медицине. Бром и иод - сильные окислители, используются при различных синтезах и анализах веществ.

Большие количества брома и иода расходуются на изготовле­ние лекарств.

Галогеноводороды

Соединения галогенов с водородом НХ, где X - любой га­логен, называются галогеноводородами. Вследствие высокой электроотрицательности галогенов связующая электронная пара смещена в их сторону, поэтому молекулы этих соединений полярны.

Галогеноводороды - бесцветные газы, с резким запахом, легко растворимы в воде. При 0°С в 1 объеме воды растворяете 500 объемов НС1, 600 объемов HBr и 450 объемов HI. Фтороводород смешивается с водой в любых соотношениях. Высокая раство­римость этих соединений в воде позволяет получать концентриро-

Таблица 16. Степени диссоциации галогеноводородных кислот

ванные растворы. При растворении в воде галогеноводороды диссоциируют по типу кислот. HF относится к слабо диссоциированным соединениям, что объясняется особой прочностью связи в куле. Остальные же растворы галогеноводородов относятся к числу сильных кислот.

HF - фтороводородная (плавиковая) кислота НС1 - хлороводородная (соляная) кислота HBr - бромоводородная кислота HI - иодоводородная кислота

Сила кислот в ряду HF - НСl - HBr - HI возрастает, что объясняется уменьшением в том же направлении энергии связи и увеличением межъядерного расстояния. HI - самая сильная кислота из ряда галогеноводородных кислот (см. табл. 16).

Поляризуемость растет вследствие того, что вода поляризует

больше ту связь, чья длина больше. I Соли галогеноводородных кислот носят соответственно следующие названия: фториды, хлориды, бромиды, иодиды.

Химические свойства галогеноводородных кислот

В сухом виде галогеноводороды не действуют на большинство металлов.

1. Водные растворы галогеноводородов обладают свойствами бескислородных кислот. Энергично взаимодействуют со многими металлами, их оксидами и гидроксидами; на металлы, стоящие в электрохимическом ряду напряжений металлов после водорода, не действуют. Взаимодействуют с некоторыми солями и газами.

Фтороводородная кислота разрушает стекло и силикаты:

SiO 2 +4HF=SiF 4 +2Н 2 O

Поэтому она не может храниться в стеклянной посуде.

2. В окислительно-восстановительных реакциях галогеноводородные кислоты ведут себя как восстановители, причем восста­новительная активность в ряду Сl - , Br - , I - повышается.

Получение

Фтороводород получают действием концентрированной серной кислоты на плавиковый шпат:

CaF 2 +H 2 SO 4 =CaSO 4 +2HF­

Хлороводород получают непосредственным взаимодействием водорода с хлором:

Н 2 +Сl 2 =2НСl

Это синтетический способ получения.

Сульфатный способ основан на реакции концентрированной

серной кислоты с NaCl.

При небольшом нагревании реакция протекает с образовани­ем НСl и NaHSO 4 .

NaCl+H 2 SO 4 =NaHSO 4 +HCl­

При более высокой температуре протекает вторая стадия ре­акции:

NaCl+NaHSO 4 =Na 2 SO 4 +HCl­

Но аналогичным способом нельзя получить HBr и HI, т.к. их соединения с металлами при взаимодействии с концентрировав-

ной серной кислотой окисляются, т.к. I - и Br - являются сильны­ми восстановителями.

2NaBr -1 +2H 2 S +6 O 4(к) =Br 0 2 +S +4 O 2 ­+Na 2 SO 4 +2Н 2 O

Бромоводород и иодоводород получают гидролизом PBr 3 и PI 3: PBr 3 +3Н 2 O=3HBr+Н 3 PO 3 PI 3 +3Н 2 О=3HI+Н 3 РO 3

Галогениды

Галогениды металлов являются типичными солями. Харак­теризуются ионным типом связи, где ионы металла имеют поло­жительный заряд, а ионы галогена отрицательный. Имеют крис­таллическую решетку.

Восстановительная способность галогенидов повышается в ряду Сl - , Br - , I - (см. §2.2).

Растворимость малорастворимых солей уменьшается в ряду AgCl - AgBr - AgI; в отличие от них, соль AgF хорошо раство­рима в воде. Большинство же солей галогеноводородных кислот хорошо растворимы в воде.

Биологическое значение
и применение галогенов
и их соединений

9 класс

Цели. Воспитательные . Воспитание коллективизма, экологической культуры, бытовой компетентности учащихся.

Развивающие: развитие умения делать выводы, выявлять существенное, развитие логического мышления.

Образовательные: учащиеся должны знать биологическую роль галогенов, применение галогенов и их соединений.

Урок по программе Габриеляна О.С. комбинированный, с элементами изучения нового материала, в виде беседы, групповой работы.

Оборудование. Образцы зубной пасты, изделия из тефлона, пластмассы, лекарства, фотобумага, карточки с символами галогенов.

Девиз: Человек – творец будущего!

ХОД УРОКА

Организационный момент

Учитель. Какие элементы мы проходили на последних занятиях?

Учащиеся. Галогены .

Учитель. Что мы изучали про галогены?

Учащиеся. Строение, свойства.

Учитель. Что осталось неизученным?

Учащиеся. Применение, история открытия.

Учитель. Тема нашего урока… (учащиеся сами формулируют тему: «Биологическое значение и применение галогенов и их соединений»). Нам понадобятся некоторые ваши знания.

На листочках раздаются вопросы, на которые учащиеся отвечают письменно.

Вопросы для актуализации знаний

1) Перечислите галогены с указанием порядкового номера и относительной атомной массы каждого.

2) Продолжите фразу: «Молекулы галогенов состоят из...»

3) Какое значение степени окисления характерно для галогенов?

4) Как изменяется радиус атомов в подгруппе галогенов?

5) Как изменяются окислительные свойства от фтора к астату?

Ответы для самооценки знаний учащимися.

1) F – № 9, A r = 19; Cl – № 17, A r = 35,5;

Br – № 35, A r = 80; I – № 53, A r = 127;

At – № 85, A r = 210.

2) Двух атомов.

4) Увеличивается от фтора к астату.

5) Уменьшаются.

Учитель. Если вы не знали что-либо, то поправьте себя, запомните.

Мотивация

Учитель (показывает на образцы зубной пасты, изделий из тефлона, лекарств). Как вы думаете, какие элементы «работают» в этих широко применяемых материалах?

Учащиеся. Галогены .

Учитель. Интересно узнать подробнее о применении галогенов и их соединений.

Работа в группах

Учащиеся в рабочих тетрадях делят лист на две графы:

1) Что знаю о значении и применении галогенов и их соединений?

2) Что нового узнал о значении и применении галогенов и их соединений?

Класс делится на группы по характеру мотивации учения, особенностям интеллектуального развития, уровню волевого развития, саморегуляции, внимания, степени работоспособности. Работа в группах с текстами о галогенах: создание буклета о своем представителе семейства галогенов по плану.

1) Титульный лист должен не только отражать название темы, но и заинтересовать.

2) Последняя страница должна содержать фамилии авторов.

3) На четырех страницах буклета отразить биологическое значение галогена и его соединений, экологические проблемы, связанные с данным галогеном, применение галогена и его соединений в промышленности, сельском хозяйстве, медицине, быту.

4) Можно отразить в буклете историю открытия элемента.

5) Буклет может содержать также картинки, рисунки, схемы по вашему усмотрению.

Социализация – обмен информацией, обсуждение, занесение в тетрадь.

Т е к с т ы

Этот элемент был предсказан Д.И.Менделеевым под названием экайода и стал вторым (после технеция) синтезированным элементом. Его синтез провели американские ученые Д.Корсон, К.Мак-Кензи и Э.Сегре (1940) по ядерной реакции:

В настоящее время известно 24 искусственных изотопа астата. Все они короткоживущие (отсюда и название элемента: по-гречески означает неустойчивый). Самый стабильный изотоп – его период полураспада около 8 ч. По своим свойствам астат похож и на йод, и на полоний, свинец – имеет выраженные металлические свойства.

Атомы всех изотопов самого тяжелого галогена очень неустойчивы. Их ядра претерпевают быстрый радиоактивный распад, поэтому астата в земной коре чрезвычайно мало (по самым оптимистичным оценкам всего ~30 г), и его свойства остаются малоизученными.

Йод красой своей гордился,
Твердым был, но испарился.
Фиолетовый, как ночь,
Далеко умчался прочь.

Йод был открыт французским химиком Б.Куртуа в 1811 г. Ученый наблюдал появление фиолетовых паров с запахом, похожим на запах хлора, при действии концентрированной серной кислоты на золу морских водорослей.

Название йод образовано от греческого – цвет фиалки, фиолетовый.

Йод плохо растворяется в воде, значительно лучше – в спирте и многих других органических растворителях. Спиртовой раствор йода широко применяют для дезинфекции небольших ран на коже.

Йод в нашем организме играет выдающуюся роль. Он обеспечивает нормальное функционирование щитовидной железы, от которой зависит, в частности, и способность человека к умственной работе. Микроколичества йода поступают в организм с пищей, питьевой водой, некоторыми продуктами питания (особенно морского происхождения). В Нижегородской области люди страдают от дефицита йода – его слишком мало в питьевой воде. Для того чтобы компенсировать дефицит йода, используют йодированную соль – поваренную соль, к которой в заводских условиях добавлены микроколичества йодида натрия или калия.

Для того чтобы обезопасить щитовидную железу от накопления в ней атомов радионуклида 131 I, которые образуются при работе ядерного реактора и в результате аварии могут попасть в атмосферу, врачи рекомендуют выпить стакан молока, в который добавлена одна капля медицинской йодной настойки. Объем щитовидной железы очень мал, и этого количества йода достаточно, чтобы насытить ее и на неделю лишить способности дополнительно поглощать поступающий в организм йод. После взрыва на Чернобыльской АЭС в нашей стране, к счастью, ни одной аварии, сопровождающейся выбросом в окружающую среду 131 I, не было.

Йод применяют при глубокой очистке металлов, синтезе лекарств.

Бром разлился океаном,
Хоть зловонным, но румяным.
Бил себя он грозно в грудь:
«Я ведь бром! Не кто-нибудь!..»

Бром от греческого – зловоние.

В 1825 г. французский химик А.Ж.Балар выделил бром из золы морских водорослей, действуя на них концентрированной серной кислотой и пиролюзитом (MnO 2).

Бром – тяжелая темно-красная жидкость* ( = 3,1055 г/см 3), образующая желто-бурые пары с резким запахом, способные вызвать поражение дыхательных путей. При попадании жидкого брома на кожу образуются очень болезненные ожоги и трудно заживающие язвы.

Бром хранят в склянках с притертыми стеклянными пробками. Работать с бромом можно только под тягой в маске (очках) и резиновых перчатках. При попадании брома на кожу следует быстро промыть пораженное место спиртом, большим количеством воды, а затем многократно 2%-м раствором пищевой соды. При случайном вдыхании паров брома необходимо вдыхать пары 2%-го раствора аммиака, а затем кислород или свежий воздух.

Источником брома в промышленности служат воды некоторых озер.

Физиологическая роль брома в организме незначительна. Все слышали, что врачи назначают «бром» как успокоительное средство. Понятно, что речь идет не о простом веществе бром (бром очень ядовит). Больным прописывают раствор бромида натрия или калия.

Бромом богаты чечевица, фасоль, стручки гороха. У животных бром обнаружен в крови, спинномозговой жидкости, гипофизе, надпочечниках.

Бромид серебра применяют в фотографии. Бромид натрия добавляют в дубильные растворы для получения более твердой кожи. Из прозрачных кристаллов KBr делают линзы, которые великолепно пропускают инфракрасные лучи и применяются в приборах ночного видения.

Бромид лития предотвращает коррозию в холодильных установках, обезвоживает минеральные масла, помогает кондиционировать воздух.

В текстильной отрасли промышленности широко используют броминдиго, с помощью которого получают целую гамму ярких и чистых цветов от синего до красного.

На долю хлора приходится 0,017% от массы земной коры. Хлор входит в состав минерала галита (NаCl), сильвина (KCl), сильвинита (NaCl KCl) и других.

Хлор хвалился:

«Нет мне равных!
Галоген я самый главный.
Зря болтать я не люблю:
Все на свете отбелю!»

Хлор от греческого – желто-зеленый.

В 1774 г. шведский химик К.Шееле при нагревании с концентрированной соляной кислотой минерала пиролюзита MnО 2 получил хлор.

Хлор в промышленности получают электролизом водного раствора хлорида натрия:

Получать хлор электролизом расплавов хлоридов экономически невыгодно. В лаборатории для получения хлора используют окисление концентрированной соляной кислоты сильными окислителями:

14HCl + K 2 Cr 2 O 7 = 2CrCl 3 + 2KCl + 3Cl 2 + 7H 2 O.

Температура кипения хлора –33,97 °C; хлор – зеленовато-желтый газ с резким запахом, в 2,5 раза тяжелее воздуха; при повышенном давлении переходит в жидкое состояние (желтая жидкость) уже при комнатной температуре, поэтому его удобно транспортировать и хранить в жидком виде в баллонах. Баллоны с хлором выкрашены в зеленый цвет.

Растворимость хлора в воде мала.

Раствор, полученный при поглощении 2,5 объемов Cl 2 одним объемом воды, называется хлорной водой.

При незначительном содержании газа в воздухе, когда ощущается лишь слабый запах, хлор оказывает обеззараживающее воздействие. Однако длительное вдыхание воздуха с содержанием хлора выше 0,01 мг/л вызывает сильное раздражение слизистых оболочек дыхательных путей, жжение во рту и кашель, а порой приводит к смерти от удушья.

Хлор относится к группе удушающих веществ. Он был первым боевым отравляющим веществом, примененным немцами во время Первой мировой войны. Действие отравляющих веществ на организм различно. Одни, как хлор, поражают главным образом органы дыхания, другие, как хлорпикрин Cl 3 CNO 2 , преимущественно поражают глаза и вызывают сильное слезотечение (слезоточивые отравляющие вещества), некоторые, как иприт (С 2 Н 4 Cl) 2 S и люизит СНCl=СНAsCl 2 , вызывают нарывы на коже (нарывные отравляющие вещества). Вредное действие может также заключаться в отравлении организма веществом, например фосгеном СОCl 2 , проникающим в кровь через слизистые оболочки (ядовитые отравляющие вещества).

Сложные отравляющие вещества, наряду с хлором, находят применение в сельском хозяйстве для борьбы с вредителями. Для уничтожения, например, сусликов хлор из баллона пропускают в норку в течение 1–2 с; затем норку выдерживают закрытой около минуты.

Впервые хлор был использован в медицине. Раствор CaCl(OCl) в воде – хлорная известь – рекомендовался как дезинфицирующее средство врачам и студентам-медикам при работе в моргах.

С помощью соединений, содержащих хлор, легко и быстро отбеливают хлопчатобумажные, льняные ткани и целлюлозу (соответственно в текстильной и бумажной отраслях промышленности). Ведь до появления этих соединений в некоторых европейских, особенно северных, странах весенней порой поля и луга устилали льняными тканями, которые под воздействием солнечных лучей и других природных факторов приобретали необходимую белизну. Для лугового отбеливания ткани из Англии отправляли даже в Голландию, а купцы из французского города Бордо вывозили ткани на африканские побережья.

Хлором обеззараживают воду.

В цветной металлургии хлорированием руд извлекают из них некоторые металлы (титан, ниобий, тантал).

Суточная потребность взрослого человека в хлоре (2–4 г) обеспечивается за счет пищевых продуктов.

Особенно богаты хлором хлеб, мясные и молочные продукты. В организме хлор играет большую роль, хлорид-ионы способствуют удержанию тканями воды при водно-солевом обмене.

Максимальная массовая доля HCl в растворе соляной кислоты при комнатной температуре составляет ~36%. Попадание паров HCl в атмосферу приводит к сильной коррозии стальных изделий, однако стеклянная аппаратура устойчива. Техническая соляная кислота часто окрашена в желтый цвет из-за наличия в ней примеси соединений железа. Концентрированную HCl иногда используют в быту для чистки раковин, удаления ржавчины.

Важное практическое значение имеют гипохлориты – соли хлорноватистой кислоты НОCl, содержащей атом хлора в степени окисления +1. Особенно важны гипохлориты натрия NaOCl и калия KОCl, которые входят в состав многих чистящих и отбеливающих паст и порошков, а также хлорная известь СаCl(ОCl) – хлорка. Отбеливающее и дезинфицирующее действие гипохлоритов и хлорной извести объясняется очень сильными окислительными свойствами гипохлорит-иона OCl – и оксида Cl 2 О, содержащих атом хлора в степени окисления +1.

Хлорид-ионы входят в состав желудочного сока, участвуют в различных внутриклеточных процессах. Эти ионы в достаточном количестве поступают в наш организм с пищей. Поваренная соль служит вкусовой добавкой и для нормального функционирования организма не нужна. Более того, врачи считают, что избыток соли в пище способствует развитию многих заболеваний (прежде всего сердечно-сосудистых), и часто назначают больным бессолевые диеты. Поваренные книги рекомендуют при варке, например, бульона подсаливать его из расчета одна чайная ложка соли на один литр воды.

Хлору в степени окисления +3 соответствует неустойчивая хлористая кислота HClO 2 , соли которой называются хлориты. Хлориты проявляют довольно сильные окислительные свойства. Наибольшее значение имеет хлорит натрия NaClO 2 . Его используют в дорожном хозяйстве – посыпают им трещины в асфальтовом покрытии для того, чтобы предотвратить рост в этих трещинах различных сорняков, корни которых быстро разрушают асфальт.

Степени окисления хлора +5 соответствует сильная хлорноватая кислота НClO 3 и ее соли – хлораты. Известная бертолетова соль – хлорат калия KClO 3 – устойчива при хранении, но ее смеси со многими органическими материалами взрывоопасны. В домашних условиях недопустимо работать с взрывчатыми веществами, взрыв может произойти при простом перемешивании смеси.

В степени окисления +7 хлор образует очень сильную хлорную кислоту HClO 4 и ее соли – перхлораты. Устойчивые, например, перхлорат магния Mg(ClО 4) 2 , иногда используют как осушитель газов; перхлорат аммония NН 4 ClО 4 применяют как окислитель в твердом ракетном топливе.

Хлороформ (трихлорметан) СНСl 3 – бесцветная, прозрачная, тяжелая, подвижная, летучая жидкость с характерным сладковатым запахом и жгучим вкусом. Трудно растворяется в воде. Смешивается во всех соотношениях со спиртом, бензином и эфирными маслами. Впервые хлороформ был синтезирован Ю.Либихом в 1831 г. Однако наркотическое действие хлороформа еще несколько лет оставалось неизвестным. Лишь в 1848 г. в Англии хлороформ был применен для общего наркоза при хирургических операциях, а в России для этой цели хлороформ был впервые использован Н.И.Пироговым. Хлороформ – сильное наркотическое вещество, обладающее к тому же сравнительно высокой токсичностью. Частое вдыхание в больших концентрациях паров хлороформа может вызвать нарушение сердечного ритма, дистрофические изменения в миокарде, жировое перерождение, цирроз и атрофию печени, нарушение углеводного обмена, оказать канцерогенное воздействие на организм.

На высоте 15–25 км над землей находится озоновый слой атмосферы, защищающий живые объекты от жесткого ультрафиолетового излучения. При попадании в атмосферу хлорсодержащие соединения диссоциируют под действием УФ-света с образованием атомов хлора, которые реагируют с озоном:

Cl + O 3 = ClO + O 2 .

В 1987 г. 36 государств подписали Монреальский протокол о снижении производства фреонов как самых опасных разрушителей озона. Запуски космических челноков также сильно разрушают озоновый слой. При одном старте «Шаттла» в атмосферу попадает около 200 т хлора.

Один атом хлора в состоянии уничтожить около 100 тыс. молекул озона:

Cl + O 3 -> ClO + O 2 ,

O 3 -> O 2 + О ,

ClO + O -> Cl + O 2 .

В земной коре наиболее распространен фтор – 0,065% по массе, 13-е место, в основном встречается в составе двух минералов – плавикового шпата СаF 2 и фторапатита 3Са 3 (PO 2) 2 CaF 2 .

В периодической системе под № 9 находится элемент, образующий простое вещество с экстремальными свойствами. В мире он известен под двумя именами. За рубежом его называют флюором, что в переводе с латинского означает «текучий». Это название берет начало от слова «флюорит», т.е. плавиковый шпат. (Этот минерал способен снижать температуру плавления руды.) Флюорит – первое из соединений фтора, которое использовал человек. В России его называют фтором. Значение фтора в современном мире трудно переоценить, но за ним тянется слава агрессивного, опасного, ядовитого разрушителя. Фтор – от греческого phthoros – разрушение.

Природа обезопасила все живое, заключив природный фтор в состав малорастворимых и нереакционноспособных соединений – плавикового шпата, апатита и фосфорита.

Фтор не зря называют неукротимым. Он образует соединения со всеми химическими элементами. В токе фтора воспламеняются древесина, резина и даже… вода. Такая активность обусловлена особенностями строения атома и молекулы фтора. Фтор единственный непосредственно реагирует и образует соединения с благородными металлами (золото, платина и др.), а также с инертными газами (кроме гелия, неона и аргона).

Пластмассу тефлон называют органической платиной, перед ней бессильны «царская водка» и расплавленные щелочи, высокие и низкие температуры. В таких соединениях нуждается ракетная, атомная, авиационная техника.

Фтор – самый сильный окислитель, это свойство позволяет использовать его в качестве окислителя ракетного топлива. Фтор – верный слуга человека во многих отраслях промышленности. Его соединения применяют в оптической и лазерной технике, при изготовлении полупроводниковых приборов и космической аппаратуры, в современных вычислительных устройствах и ядерной энергетике.

Фтор считают главным элементом научно-технического прогресса. Создание новых способов получения энергии, легких и прочных пластмасс, нового поколения вычислительной техники, безотходных производств и многого другого возможно благодаря соединениям фтора.

Первым известным соединением фтора был плавиковый шпат СаF 2 , который в средние века металлурги использовали для понижения температуры плавления руды и шлака. Минерал был описан в конце XV в. Василием Валентином, а затем в 1529 г. основоположником прикладной химии Георгием Агриколой. В 1771 г. Карл Шееле получил плавиковую кислоту. Над получением фтора многие ученые работали почти 100 лет! Это – Э.Б.Дюма, А.Л.Лавуазье, Г.Дэви, А.М.Ампер, М.Фарадей, Г.Нокс и Т.Нокс, Э.Ферми, Г.Гор, А.П.Бородин… И, наконец, Анри Муассан 26 июня 1886 г. получил фтор. Отчет о работе А.Муассана: фтор был получен электролизом безводного фтороводорода, сжиженного при температуре ниже 0 °С с платиново-иридиевыми электродами. Для уменьшения активности фтора весь аппарат был погружен в охладительную смесь, которая позволяла снизить температуру до –23 °С.

В 1906 г. за выделение, изучение фтора и его соединений Анри Муассан был удостоен Нобелевской премии.

Фтороводородная кислота слабая. Но это единственная кислота, способная реагировать со стеклом:

4HF + SiO 2 = SiF 4 + 2H 2 O.

Особенность плавиковой кислоты в том, что она может существовать (так же, как и вода) в виде олигомеров (HF) n . Средняя степень ассоциации в жидкости n = 6.

HF широко применяется в авиационной, химической, целлюлозно-бумажной отраслях промышленности; с ее помощью делают надписи и рисунки на стекле.

Фтор в составе фторапатита входит в состав зубной эмали, которая обеспечивает твердость наших зубов.

При недостатке фтора защитный слой фторапатита разрушается, и появляется кариес. При избытке фтора наблюдается повышенная хрупкость костей.

Фтор получают только электролизом расплава гидрофторида калия KHF 2 , в котором растворен фтороводород. Транспортируют фтор обычно в сжиженном виде в специальных охлаждаемых емкостях (так называемых танках). Небольшие количества фтора в лаборатории можно получить по реакции:

2K 2 MnF 6 + 4SbF 5 = 4KSbF 6 + 2MnF 3 + F 2 .

Фреоны, например СF 2 Cl 2 – дифтордихлорметан, используются в холодильниках и кондиционерах в качестве «рабочего вещества».

Фтор входит в состав полимеров, лекарств, моющих средств, ядохимикатов, красителей, компонентов искусственной крови.

Еще во время Второй мировой войны были созданы боевые отравляющие вещества нервно-паралитического действия – зарин, зоман, содержащие в своем составе фтор.

Фториды используются в медицине, растениеводстве и животноводстве. С ними связывают перспективу лечения рака и регулирования наследственности, создание мощных психотропных средств, транквилизаторов, антибиотиков.

После изучения текстов учащиеся обмениваются информацией в группе, записывают в тетрадь, что они узнали нового. Далее каждая группа создает рукописный буклет с описанием одного из галогенов и представляет его всему классу. Один учащийся защищает творческую работу всей группы. Во время защиты буклета идет презентация по галогенам.

Учитель. Вы потрудились на славу. Есть простор для вашего творчества. Вы будете работать и примените полученные знания .

Закрепление материала

Викторина «Угадай галоген»

(Ответ – карточка с символом элемента.)

1. Какой галоген входит в состав зубной эмали?

2. Какой галоген даже в твердом состоянии со взрывом соединяется с водородом?

3. Без него не обходится ни одна хорошая зубная паста.

4. Парадокс? Противоречье?
Разрушитель зубы лечит!
Подсказал науке слон:
«Кариесу... заслон!»

(О т в е т. Фтор .)

1. В жидком состоянии его впервые получил Майкл Фарадей, охлаждая в смеси поваренной соли со льдом.

2. В переводе с греческого его название означает «желто-зеленый».

3. Он был использован в качестве первого боевого отравляющего вещества.

4. Хлорофилл не любит…
Это ведь отнюдь не вздор.
Слов стечение роковое,
В... гибнет все живое.

(О т в е т. Хлор .)

1. Единственный жидкий неметалл.

2. Мурид – так назвал его первооткрыватель Антуан Балар.

3. Мне сегодня … помог:
Я спокоен, словно йог.

(О т в е т. Бром .)

1. Академик А.Е.Ферсман назвал его «вездесущим».

2. Отсутствие какого элемента в организме человека вызывает заболевание щитовидной железы?

3. Помни, боевой народ:
Первый лекарь – это...
Раны мажь, не ойкай,
... настойкой.

(О т в е т. Йод .)

1. Самый неустойчивый галоген.

2. Галоген, которого практически нет в природе.

3. Мечта познать его пуста.
Он сам – сплошная тайна.
Секунды счет ведет...
И, исчезая, тает.

(О т в е т. Астат .)

Кроссворд «Галогены»

По вертикали: 1. Агрегатное состояние первых двух представителей галогенов при нормальных условиях. 2. Самый тяжелый галоген, полученный искусственно в 1940 г. с помощью ядерной реакции. Обнаружен в природе в 1943 г. По свойствам близок к йоду. 3. Наиболее характерное свойство галогенов – присоединение электрона, отдаваемого металлами, поэтому о них говорят: «Галогены – сильные...» 4. Самый химически активный галоген. Впервые получен в 1886 г. А.Муассаном (Франция). 5. Переход из твердого состояния непосредственно в пар, способный превращаться в твердое тело, минуя стадию жидкого состояния. Легко осуществляется для йода. Используется для очистки веществ. 6. Количество электронов на внешнем энергетическом уровне в атомах галогенов. 7. Значение слова «бром» в переводе с греческого языка на русский. 8. Название солей, которые получаются в результате взаимодействия хлора с металлами; соли хлороводородной кислоты.

Заключение

Учащийся.

Группы семь аборигены:
Солероды – галогены.
Окислительный народ –
Эти
F, Cl, Br и I!

В клетках 9 и 17
Два преступника томятся.
Главный электронный вор,
Разрушитель Фтор – Флюор,
С водородом заодно
Влезет запросто в окно.

Ядовит зеленый Хлор,
Замышляет страшный ор.
Он побег готовит в роли
Самой безобидной соли.

Жидкий и зловонный Бром
Притаился за бугром.
Вот сейчас петлю накинет
На Алкены и Алкины…

И хитер в разбойный род
Фиолетовый Йод.
Твердый только до поры,
На глазах уйдет в пары.
Посмотри, каков нахал:
Перепортил весь крахмал!

* Темно-красный цвет жидкого брома виден в проходящем свете, в отраженном свете он темно-фиолетовый, почти черный. – Прим. ред.