Вконтакте Facebook Twitter Лента RSS

Чему равен дыхательный коэффициент при окислении белков. Оценка метаболизма. Экскреция азота и дыхательный коэффициент. Дыхание и температура

(ДК) это отношение объема выделенного в процессе дыхания углекислого газа к объему поглощенного кислорода.

Величина дыхательного коэффициента растений

Величина ДК указывает как на харак­тер окисляемого в процессе дыхания материала, так и на тип дыхания; она может быть равна единице, больше или меньше ее. При окислении углеводов объемы обмениваемых газов угле­кислоты и кислорода равны и отношение С0 2: 0 2 равно единице. В данном случае потребляемый при дыхании кислород идет только на окисление углерода до углекислоты, потому что соот­ношение водорода и кислорода в молекуле глюкозы таково, что для окисления водорода до воды кислорода достаточно в самой молекуле сахара. При окислении ряда органических кислот дыхательный коэффициент растений больше еди­ницы. Так, щавелевая кислота - соединение, более богатое кис­лородом, чем углеводы. Кислорода, имеющегося в молекуле, не только достаточно для окисления водорода до воды, но часть его остается и для окисления углерода; поэтому для полного окисления двух молекул щавелевой кислоты достаточно одной молекулы кислорода: 2С 2 Н 2 О 4 + О 2 → 4СО 2 + 2Н 2 О, ДК (4СО 2: О 2) в этом случае равен 4. В тех случаях, когда растение дышит за счет белков или жи­ров, в молекуле которых много водорода и углерода и мало кис­лорода, ДК меньше единицы, так как для окисления всего углерода и водорода, находящегося в этих соединениях, необхо­димо поглотить большое количество кислорода. При окислении стеариновой кислоты реакция окисления пойдет следующим образом: С 18 Н 26 О 2 + 26О 2 → 18СО 2 + 18Н 2 О. ДК (18СО 2: 26О 2) равен 0,69. Таким образом, в случае окисления углеводов ДК равен еди­нице, органических кислот - больше единицы, белков и жиров - меньше единицы.

Тепловой эффект при дыхании растений

Тепловой эффект будет иметь значение, обратное величине ДК: максимальный тепловой эффект будет при окислении жиров, потому что они наиболее восстановленные соединения. Зависимость величины ДК от характера дыхательного мате­риала наблюдается только в том случае, когда в окружающей среде и тканях растения достаточно кислорода. Однако при окислении одного и того же дыхательного материала, но при недостатке кислорода в окружающей среде и тканях растений величины ДК также могут изменяться. Если кислорода мало, то при окисление идет не до конца и кроме углекислого газа и воды образуются органические кислоты, которые более окислены, чем углеводы. В этом случае ДК будет меньше еди­ницы, так как часть поглощенного кислорода останется в моле­кулах образованных органических кислот, углекислоты же вы­делится меньше. Меньше выделится и энергии, так как часть ее сохранится в органических кислотах.

Экскреция азота может быть использована для определения метаболизма белка. В белке содержится приблизительно 16% азота. В процессе метаболизма белка около 90% присутствующего в белке азота экскретируются с мочой в виде мочевины, мочевой кислоты, креатинина и прочих менее важных соединений, содержащих азот.

Остальные 10% экскретируются с каловыми массами , поэтому скорость распада белка в организме может быть подсчитана путем определения содержания азота в моче: к этому количеству добавляют 10% азота, экскретируемого с калом, и умножают на 6,25 (т.е. 100/16). Таким образом можно определить общее количество белка, распавшегося в организме за сутки. Так, например, экскреция 8 г азота с мочой за сутки означает, что около 55 г белка подверглись распаду. Если ежесуточное потребление белка меньше количества его распада, говорят об отрицательном азотистом балансе, что означает ежедневное уменьшение содержания белка в организме.

Дыхательный коэффициент - отношение объема выделенного СО2 к объему потребленного О2 - можно использовать для определения расхода углеводов и жиров. Если углеводы метаболизируются с использованием кислорода, то при окислении каждой молекулы углеводов образуется 1 молекула углекислого газа и расходуется 1 молекула кислорода. В этом случае отношение объема выделенной углекислоты к объему потребленного кислорода, называемое дыхательным коэффициентом, при окислении углеводов будет равно 1,0.

При окислении жиров в среднем на каждые 70 молекул образовавшегося углекислого газа приходится 100 молекул потребленного кислорода. Дыхательный коэффициент при окислении жиров составляет 0,7. При окислении только белков дыхательный коэффициент приблизительно равен 0,8. Кислород, расходуемый на окисление этих веществ, взаимодействует с атомами водорода, в избытке присутствующими в молекулах этих веществ, поэтому при использовании равных количеств кислорода образуется меньше углекислого газа.
По этой причине дыхательный коэффициент при окислении белков и жиров меньше, чем при окислении углеводов.

Рассмотрим, как можно использовать дыхательный коэффициент для определения степени использования тех или иных питательных веществ в организме. Количество углекислого газа, выделенного легкими, деленное на количество кислорода, потребленного за то же время, называют показателем легочной вентиляции. Если этот показатель отслеживать приблизительно в течение часа, показатель легочной вентиляции становится равным дыхательному коэффициенту. Приближение значения дыхательного коэффициента к 1,0 указывает на то, что в организме окислялись углеводы, т.к. дыхательный коэффициент при окислении белков и жиров значительно меньше 1,0. Если дыхательный коэффициент ближе к 0,7, то в организме окисляются только жиры.

Наконец, если не учитывать возможность окисления небольшого количества белков, то значения дыхательного коэффициента в интервале значений 0,7-1,0 могут приблизительно указывать на преобладание окисления жиров либо углеводов. Для более точного определения следует подсчитать расход белка с помощью определения количества экскретируемого азота, а затем, используя соответствующие математические формулы, почти точно рассчитать количество израсходованных жиров и углеводов.
Перечислим наиболее существенные результаты, полученные при изучении дыхательного коэффициента.

1. Сразу после приема пищи наиболее существенным субстратом окисления становятся углеводы. Дыхательный коэффициент в этот период приближается к 1,0.
2. Через 8-10 ч после приема пищи, когда организм почти использовал все имеющиеся в наличии углеводы, дыхательный коэффициент приближается к 0,7, что указывает на преобладание использования жиров.

3. При наличии нелеченного сахарного диабета очень небольшое количество углеводов может использоваться организмом в любых условиях, т.к. для их использования необходим инсулин, поэтому при тяжелом диабете дыхательный коэффициент практически всегда остается приближенным к 0,7, что характерно для преобладания окисления жиров.

Работа 3. Определение дыхательного коэффициента

Важный показатель химической природы дыхательного субстрата – дыхательный коэффициент (ДК ) – отношение объема выделенного углекислого газа (V (СО 2)) к объему поглощенного кислорода (V (О 2)). При окислении углеводов дыхательный коэффициент равен 1, при окислении жиров (более восстановленных соединений) кислорода поглощается больше, чем выделяется углекислого газа и ДК < 1. При окислении органических кислот (менее восстановленных, чем углеводы соединений) ДК > 1.

Величина ДК зависит и от других причин. В некоторых тканях из-за затрудненного доступа кислорода наряду с аэробным происходит анаэробное дыхание, не сопровождающееся поглощением кислорода, что приводит к повышению значения ДК . Величина дыхательного коэффициента обусловлена также полнотой окисления дыхательного субстрата. Если, кроме конечных продуктов, в тканях накапливаются менее окисленные соединения, то ДК < 1.

Прибор для определения дыхательного коэффициента (рис. 8) состоит из пробирки (рис. 8, а) или другого стеклянного сосуда (рис. 8, б ) с плотно пригнанной пробкой, в которую вставлена измерительная трубка со шкалой из миллиметровой бумаги.

Материалы и оборудование. Прорастающие семена подсолнечника, ячменя, гороха, фасоли, льна, пшеницы, 20 %-й раствор гидроксида натрия, шприц на 2 см 3 , цветная жидкость, чашка Петри, химическая пробирка, U-образно изогнутая трубка, эластичная трубка, пробка с отверстием, пинцет анатомический, полоски фильтровальной бумаги (1,5 5 см), миллиметровая бумага, песочные часы на 3 мин, штатив для пробирок.

Ход работы. В пробирку внесите 2 г прорастающих семян подсолнечника. Плотно закройте пробирку пробкой, соединенной эластичной трубкой с изогнутой U-образно стеклянной трубкой, и введите в конец последней при помощи пипетки небольшую каплю жидкости, создавая внутри прибора замкнутую атмосферу. Во время опыта обязательно поддерживайте постоянную температуру. Для этого поставьте прибор в штатив, избегая тем самым нагревания его руками или дыханием. Определите на сколько делений шкалы продвинется капля внутрь трубки за 3 мин. Для получения точного результата вычислите среднюю величину из трех измерений. Полученная величина выражает разницу между объемом поглощенного при дыхании кислорода и объемом выделенного углекислого газа.

Откройте прибор с семенами и положите в него пинцетом свернутую в кольцо полоску фильтровальной бумаги, предварительно пропитанную раствором NaOH. Снова закройте пробирку, поместите в измерительную трубку новую каплю цветной жидкости и продолжайте измерение скорости ее движения при той же температуре. Новые данные, из которых опять вычислите среднюю величину, выражают объем поглощенного при дыхании кислорода, так как выделившийся углекислый газ поглощается щелочью.

Рассчитайте дыхательный коэффициент по формуле: , где ДК – дыхательный коэффициент; В – объем поглощенного при дыхании кислорода; А – разница между объемом поглощенного при дыхании кислорода и объемом выделенного углекислого газа.

Сравните величины дыхательных коэффициентов предложенных объектов и сделайте вывод о химической природе дыхательных субстратов каждого из объектов.

_________________________________

1 Прибор для наблюдений газообмена при дыхании растений и животных ПГД (учебный): руководство по эксплуатации / под ред. Т.С.Чанова. – М.: Просвещение, 1987. – 8 с.

Дыхательный коэффициент рассчитывается как отношение объема выдыхаемой СО 2 к объему потребляемого кислорода. В состоянии покоя и при работе умеренной интенсивности ДК служит показателем окисляемых в организме энергетических субстратов. Так, при использовании в качестве источника энергии исключительно углеводов значение ДК равно 1,0, при окислении одних жиров – 0,75. обычно в организме происходит одновременное окисление углеводов и жиров и значение ДК находится в диапазоне 0,83 – 0,85.

18.3.3. Неметаболический «излишек» СО 2

При интенсивной мышечной работе значение ДК зависит не только от окисляемых субстратов, но и от других причин. Кроме СО 2 , образующейся в окислительных превращениях (метаболическая СО 2), из организма выделяется углекислота, вытесняемая образующимися при работе кислыми продуктами (главным образом молочной кислотой) из бикарбонатной буферной системы:

NаНСО 3 + СН 3 СНОНСООН → СН 3 СНОНСООNа + Н 2 СО 3

Н 2 СО 3 → Н 2 О + СО 2

Эта углекислота, образующаяся не в ходе окислительных превращений энергетических субстратов, получила название неметаболического «излишка» СО 2 (Exess СО 2). При напряженной мышечной работе, когда в ее энергетическом обеспечении принимает участие гликолиз и образуется значительное количество молочной кислоты, основным энергетическим субстратом являются углеводы. Как уже указывалось, ДК при окислении углеводов равен 1,0. Поэтому в данных условиях к неметаболической можно отнести всю ту углекислоту, которая вызывает превышение значения ДК сверх 1,0.

Исходя из этого, для расчета неметаболического «излишка» СО 2 может быть использована следующая формула:

Exess СО 2 = VО 2 × (ДК – 1),

Где VО 2 – уровень потребления О 2 (л/мин) в исследуемый период,

ДК – значение дыхательного коэффициента.

Уровень неметаболического «излишка» СО 2 можно рассматривать как показатель скорости образования молочной кислоты, т.е. как показатель интенсивности протекания гликолиза в организме, суммарный Exess СО 2 отражает метаболическую ёмкость гликолиза.

Кислородный долг.

Под кислородным долгом понимается кислород, потребляемый в период отдыха после работы сверх уровня покоя. Для определения величины кислородного долга в течение восстановительного периода непрерывно или дискретно проводится определение уровня потребления кислорода до тех пор, пока оно не вернется к дорабочему уровню. Из полученного суммарного потребления кислорода за указанный период времени вычитается количество О 2 , которое потребил бы за тот же самый период времени организм, находящийся в состоянии покоя. Использование математических методов анализа позволяет выделить в О 2 -долге, как минимум, две фракции – «быструю» и «медленную».

Кислород, потребляемый в быстрой фракции кислородного долга, используется в окислительных превращениях, образующих АТФ, идущую на ресинтез креатинфосфата из креатина (см. главу 10). Таким образом, величина этой фракции кислородного долга отражает участие креатинфосфатного механизма в энергообеспечении мышечной работы.

Медленная фракция кислородного долга отражает количество накопленной молочной кислоты, и, следовательно, степень участия гликолиза в энергетическом обеспечении работы.

Конечно, потребляемый в период «оплаты» О 2 долга кислород расходуется не только на обеспечение ресинтеза креатинфосфата и устранение молочной кислоты. Часть его тратится на восстановление кислородного баланса организма, часть – на обеспечение энергией интенсивно работающих сердечно-сосудистой и дыхательной систем, восстановление минерального баланса, гормонального статуса и другие процессы. Это, однако, не снижает значимости этого показателя в оценке степени участия анаэробных процессов в энергетическом обеспечении напряженной мышечной работы, глубины анаэробных сдвигов.

Дыхательным коэффициентом называется отношение объема выделенного угле­кислого газа к объему поглощенного кислорода. Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Рассмотрим для примера, каков будет дыхательный коэффициент при использовании организмом глюкозы. Общий итог окисле­ния молекулы глюкозы можно выразить формулой:

При окислении глюкозы количество молекул образовавшегося углекислого газа и количество молекул затраченного (поглощенного) кислорода равны. Равное количество молекул газа при одной и той же температуре и одном и том же давлении занимает один и тот же объем (закон Авогадро - Жерара). Следовательно, дыхательный коэффициент

отношение) при окислении глюкозы и других углеводов равен единице.


При окислении жиров и белков дыхательный коэффициент будет ниже единицы. При окислении жиров дыхательный коэффициент равен 0,7. Проиллюстрируем это на примере окисления трипальмитина:

Отношение между объемами углекислого газа и кислорода составляет в данном случае:

Аналогичный расчет можно сделать и для белка; при его окислении в организме дыхательный коэффициент равен 0,8.

При смешанной пище у человека дыхательный коэффициент обычно равен 0,85-0,9. Определенному дыхательному коэффициенту соответствует определенный калорический эквивалент кислорода, что видно из табл. 20.

Таблица 20 Соотношение дыхательного коэффициента и калорического эквивалента кислорода

Определение энергетического обмена у человека в покое методом закрытой системы с неполным газовым анализом. Оч носительное постоянство дыхательного коэффициента (0,85-0,90) у людей при обычном питании в условиях покоя позволяет производить достаточно точное определение энергетического обмена у человека в покое, вычисляя только количество потребленного кислорода и беря его калорический эквивалент при усредненном дыхательном коэффициенте.

Количество потребленного организмом кислорода исследуется при помощи различ­ного типа спирографов.

© 2024 Helperlife - Строительный портал