Вконтакте Facebook Twitter Лента RSS

Непрерывные дроби проект. Разложение обыкновенной дроби в непрерывную. Что могут дать продолжительные, непрерывные усилия

- 88.50 Кб

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЛЕСНОГО ХОЗЯЙСТВА РФ

ФБОУ СПО «ДИВНОГОРСКИЙ ЛЕСХОЗ – ТЕХНИКУМ»

КАБИНЕТ МАТЕМАТИКИ

ОТЧЁТ

ПО ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ №

ПО ТЕМЕ «НЕПРЕРЫВНЫЕ ДРОБИ»

Выполнил:

Студент 1 курса гр. 11Б-Л Кардапольцев А.О.

Проверил:

Преподаватель: Коновалова Е.Г.

Оценка:

Введение - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3

Непрерывная дробь- - - - - - - - - - - - - - - - - - - - - - - - - - 4

Разложение в цепную дробь - - - - - - - - - - - - - - - - - - - - 5

Приближение вещественных чисел рациональными - - 6

Историческая справка - - - - - - - - - - - - - - - - - - - - - - - - - 7

Заключение - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8

Библиографический список - - - - - - - - - - - - - - - - - - - - - - 9

Введение

Целью моей исследовательской работы является исследование теории цепных дробей. В ней я попытаюсь раскрыть свойства подходящих дробей, особенности разложения действительных чисел в неправильные дроби, погрешности, которые возникают в результате этого разложения, и применение теории цепных дробей для решения ряда алгебраических задач.

Цепные дроби были введены в 1572 году итальянским математиком Бомбелли. Современное обозначение непрерывных дробей встречается у итальянского математика Катальди в 1613 году. Величайший математик XVIII века Леонардо Эйлер первый изложил теорию цепных дробей, поставил вопрос об их использовании для решения дифференциальных уравнений, применил их к разложению функций, представлению бесконечных произведений, дал важное их обобщение.

Работы Эйлера по теории цепных дробей были продолжены М. Софроновым (1729-1760), академиком В.М. Висковатым (1779-1819), Д. Бернулли (1700-1782) и др. Многие важные результаты этой теории принадлежат французскому математику Лагранжу, который нашел метод приближенного решения с помощью цепных дробей дифференциальных уравнений.

Непрерывная дробь

Цепная дробь (или непрерывная дробь ) - это математическое выражение вида

где a 0 есть целое число и все остальные a n натуральные числа (то есть неотрицательные целые). Любое вещественное число можно представить в виде цепной дроби (конечной или бесконечной). Число представляется конечной цепной дробью тогда и только тогда, когда оно рационально. Число представляется периодической цепной дробью тогда и только тогда, когда оно является квадратичной иррациональностью.

Разложение в цепную дробь

Любое вещественное число x может быть представлено (конечной или бесконечной) цепной дробью где

где обозначает целую часть числа x .

Для рационального числа x это разложение оборвётся по достижении нулевого x n для некоторого n . В этом случае x представляется конечной цепной дробью

Для иррационального x все величины x n будут ненулевыми и процесс разложения можно продолжать бесконечно. В этом случае x представляется бесконечной цепной дробью

Приближение вещественных чисел рациональными

Цепные дроби позволяют эффективно находить хорошие рациональные приближения вещественных чисел. А именно, если вещественное число x разложить в цепную дробь, то её подходящие дроби будут удовлетворять неравенству:

Отсюда, в частности, следует:

1) подходящая дробь является наилучшим приближением

для x среди всех дробей, знаменатель которых не превосходит q n ;

2) мера иррациональности любого иррационального числа не меньше 2.

Примеры

1) Разложим число π =3,14159265… в непрерывную дробь и подсчитаем его подходящие дроби: 3, 22/7, 333/106, 355/113, 103993/33102, …

Вторая дробь (22/7) - это известное Архимедово приближение. Четвёртая (355/113) была впервые получена в Древнем Китае.

2) В теории музыки требуется отыскать рациональное приближение для

Третья подходящая дробь: 7/12 позволяет обосновать классическое деление октавы на 12 полутонов .

Историческая справка

Античные математики умели представлять отношения несоизмеримых величин в виде цепочки последовательных подходящих отношений, получая эту цепочку с помощью алгоритма Евклида. По-видимому, именно таким путём Архимед получил приближение:

Это 12-я подходящая дробь для

Или от 4-й подходящей дроби для.

В V веке индийский математик Ариабхата применял аналогичный «метод измельчения» для решения неопределённых уравнений первой и второй степени. С помощью этой же техники было, вероятно, получено известное приближение для числа π (355/113). В XVI веке Рафаэль Бомбелли извлекал с помощью цепных дробей квадратные корни (см. его алгоритм).

Начало современной теории цепных дробей положил в 1613 году Пьетро Антонио Катальди. Он отметил основное их свойство (положение между подходящими дробями) и ввёл обозначение, напоминающее современное. Позднее его теорию расширил Джон Валлис, который и предложил термин «непрерывная дробь» . Эквивалентный термин «цепная дробь » появился в конце XVIII века.

Применялись эти дроби в первую очередь для рационального приближения вещественных чисел; например, Христиан Гюйгенс использовал их для проектирования зубчатых колёс своего планетария. Гюйгенс уже знал, что подходящие дроби всегда несократимы и что они представляют наилучшее рациональное приближение.

В XVIII веке теорию цепных дробей в общих чертах завершили Леонард Эйлер и Жозеф Луи Лагранж.

Заключение

Данная исследовательская работа показывает значение цепных дробей в математике.

Их можно успешно применить к решению неопределенных уравнений вида

ax+by=c.

Основная трудность при решении таких уравнений состоит в том, чтобы найти какое-нибудь его частное решение. Так вот, с помощью цепных дробей можно указать алгоритм для разыскания такого частного решения.

Цепные дроби можно применить и к решению более сложных неопределенных уравнений, например, так называемого уравнения Пелля:

().

Бесконечные цепные дроби могут быть использованы для решения алгебраических и трансцендентных уравнений, для быстрого вычисления значений отдельных функций.

В настоящее время цепные дроби находят все большее применение в вычислительной технике, ибо позволяют строить эффективные алгоритмы для решения ряда задач на ЭВМ.

Библиографический список:

http://ru.wikipedia.org

  1. Алгебра и теория чисел. Под редакцией Н.Я. Виленкина, М, “Просвещение”, 84.
  2. И.М. Виноградов. Основы теории чисел. М, “Наука”, 72.
  3. А.А. Кочева. Задачник-практикум по алгебре и теории чисел. М, “Просвещение”, 84.
  4. Л.Я. Куликов, А.И. Москаленко, А.А. Фомин. Сборник задач по алгебре и теории чисел. М, “Просвещение”, 93.

Е.С. Ляпин, А.Е. Евсеев. Алгебра и теория чисел. М, “Просвещение”,

Описание работы

Целью моей исследовательской работы является исследование теории цепных дробей. В ней я попытаюсь раскрыть свойства подходящих дробей, особенности разложения действительных чисел в неправильные дроби, погрешности, которые возникают в результате этого разложения, и применение теории цепных дробей для решения ряда алгебраических задач.

Непрерывная дробь- - - - - - - - - - - - - - - - - - - - - - - - - - 4

Разложение в цепную дробь - - - - - - - - - - - - - - - - - - - - 5

Приближение вещественных чисел рациональными - - 6

Историческая справка - - - - - - - - - - - - - - - - - - - - - - - - - 7

Заключение - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8

Библиографический список - - - - - - - - - - - - - - -

Сокращение с помощью разложения в непрерывную дробь

Подходящие дроби. Приближение вещественных чисел

Литература: 1. Виноградов И.М. Элементы высшей математики.

Часть третья. Основы теории чисел. Учебник для вузов.

М.: Высш. шк. 1999. – с. 335 – 340.

Грибанов В.У. Сборник упражнений по теории чисел.

– М.: Просвещение, 1964.

Шнеперман Л.Б. Сборник задач по алгебре и теории

чисел: Учебное пособие. – СПб.: Изд. «Лань»,2008.- 224с.

Краткие сведения из теории

Если - обыкновенная несократимая дробь, правильная или неправильная, то с помощью алгоритма Евклида можно эту дробь представить в виде:

a = bq 0 + a 1 ,

b = a 1 q 1 + a 2 ,

a 1 = a 2 q 2 + a 3 ,

…………….

a n-2 = a n-1 q n-1 + a n ,

a n-1 = a n q n .

Здесь q 0 , q 1 , q 2 , q 3 ,…, q n – неполные частные;

a 1 , a 2 ,a 3 ,…., a n - остатки.

Правую часть такого разложения можно представить в виде:

= q 0 +

…………

+ ,

Выражение, написанное в правой части, называется конечной непрерывной или цепной дробью.

Кратко написанное равенство можно записать так:

= (q 0 , q 1 , q 2 , q 3 ,…, q n)

Дроби = , = q 0 + , = q 0 + ,…… называются подходящими. Числитель и знаменатель этих дробей можно вычислить по рекуррентным формулам:

P -2 = 0; Q -2 =1: P -1 = 1; Q -1 = 0;

при k≥0; P k = q k P k -1 + P k -2 ; Q k = q k Q k -1 + Q k -2 . (1)

По определению P n = a , Q n = b.

Процесс вычислений удобно оформить в виде таблицы:

k -2 -1 …… n-1 n
q k q 0 q 1 q 2 …… q n-1 q n
P k P 0 P 1 P 2 …… P n-1 P n
Q k Q 0 Q 1 Q 2 …… Q n-1 Q n

Между подходящими дробями и самой дробью имеют место соотношения:

< < < ….. < < …… < < <

Для оценки погрешности при замене дроби подходящей дробью , будем применять следующую формулу:

‌‌‌ - .

Пример. Заменить дробь = подходящейдробью с погрешностью0,001.

Разложим дробь с помощью алгоритма Евклида:

Если возьмем для замены дробь , то погрешность замены будет

0,006, что более заданной 0,001, поэтому дробь не подходит.

Берем дробь для которой погрешность 0,0003 < 0,001.

Пример. По данной конечной непрерывной дроби найти соответствующую обыкновенную дробь. Пусть = (2; 1; 1; 3; 1; 2).

Решение. По соответствующим значениям q k , используя рекуррентные формулы, определим соответствующие значения числителя и знаменателя подходящих дробей P k , Q k . При k=n получим P n = a , Q n =b .

k -2 -1
q k
P k a=64
Q k b=25

k = 0; P 0 = q 0 P -1 + P -2 = 2×1 + 0 = 2; Q 0 = q 0 Q -1 + Q -2 = 2×0 + 1 = 1;

k = 1; P 1 = q 1 P 0 + P -1 = 1×2 + 1 = 3; Q 1 = q 1 Q 0 + Q -1 = 1×1 + 0 = 1;

k = 2; P 2 = q 2 P 1 + P 0 = 1×3 + 2 = 5; Q 2 = q 2 Q 1 + Q 0 = 1×1 + 1 = 2;

k = 3; P 3 = q 3 P 2 + P 1 = 3×5 + 3 = 18; Q 3 = q 3 Q 2 + Q 1 = 3×2 + 1 = 7;

k = 4; P 4 = q 4 P 3 + P 2 = 1×18 + 5 = 23; Q 4 = q 4 Q 3 + Q 2 = 1×7 + 2 = 9;

k = 5; P 5 = q 5 P 4 + P 3 = 2×23 + 18 = 64; Q 5 = q 5 Q 4 + Q 3 = 2×9 + 7 = 25.

Ответ: = .

Пример. Пусть дана дробь . Используя алгоритм Евклида разложения в непрерывную дробь, сократить эту дробь.

q 0 =2
q 1 =3
q 2 =1
q 3 =2

Получили 525 = 231 2 +63;

231 = 63 + 42;

63 = 42 1 + 21;

42 = 21 2. Имеем НОД (525;231)=21.

Полученное разложение позволяет сделать сокращенную запись

= (2; 3; 1; 2). Найдем для этого разложения подходящие дроби, используя формулы (1).

НЕПРЕРЫВНЫЕ ДРОБИ. Последовательность, каждый член которой является обычной дробью, порождает непрерывную (или цепную) дробь, если ее второй член прибавить к первому, а каждую дробь, начиная с третьей, прибавить к знаменателю предыдущей дроби.

Например, последовательность 1, 1/2, 2/3, 3/4,..., n /(n + 1),... порождает непрерывную дробь

где многоточие в конце указывает на то, что процесс продолжается бесконечно. В свою очередь непрерывная дробь порождает другую последовательность дробей, называемых подходящими. В нашем примере первая, вторая, третья и четвертая подходящие дроби равны

Их можно построить по простому правилу из последовательности неполных частных 1, 1/2, 2/3, 3/4,.... Прежде всего выпишем первую и вторую подходящие дроби 1/1 и 3/2. Третья подходящая дробь равна (2Ч 1 + 3Ч 3)/(2Ч 1 + 3Ч 2) или 11/8, ее числитель равен сумме произведений числителей первой и второй подходящих дробей, умноженных соответственно на числитель и знаменатель третьего неполного частного, а знаменатель равен сумме произведений знаменателей первого и второго неполных частных, умноженных соответственно на числитель и знаменатель третьего неполного частного. Четвертая подходящая дробь получается аналогично из четвертого неполного частного 3/4 и второй и третьей подходящих дробей: (3Ч 3 + 4Ч 11)/(3Ч 2 + 4Ч 8) или 53/38. Следуя этому правилу, находим первые семь подходящих дробей: 1/1, 3/2, 11/8, 53/38, 309/222, 2119/1522 и 16687/11986. Запишем их в виде десятичных дробей (с шестью знаками после запятой): 1,000000; 1,500000; 1,375000; 1,397368; 1,391892; 1,392247 и 1,392208. Значением нашей непрерывной дроби будет число x , первые цифры которого 1,3922. Подходящие дроби являются лучшим приближением числа x . Причем они поочередно оказываются то меньше, то больше числа x (нечетные – больше x , а четные – меньше).

Чтобы представить отношение двух положительных целых чисел в виде конечной непрерывной дроби, нужно воспользоваться методом нахождения наибольшего общего делителя. Например, возьмем отношение 50/11. Так как 50 = 4Ч 11 + 6 или 11/50 = 1/(4 + 6/11), и, аналогично, 6/11 = 1/(1 + 5/6) или 5/6 = 1/(1 + 1/5), получаем:

Непрерывные дроби используются для приближения иррациональных чисел рациональными. Предположим, что x – иррациональное число (т.е. непредставимо в виде отношения двух целых чисел). Тогда, если n 0 – наибольшее целое число, которое меньше x , то x = n 0 + (x n 0), где x n 0 – положительное число меньше 1, поэтому обратное ему число x 1 больше 1 и x = n 0 + 1/x 1 . Если n 1 – наибольшее целое число, которое меньше x 1 , то x 1 = n 1 + (x 1 – n 1), где x 1 – n 1 – положительное число, которое меньше 1, поэтому обратное ему число x 2 больше 1, и x 1 = n 1 + 1/x 2 . Если n 2 – наибольшее целое число, которое меньше x 2 , то x 2 = n 2 + 1/x 3 , где x 3 больше 1, и т.д. В результате мы шаг за шагом находим последовательность неполных частных n 0 , 1/n 1 , 1/n 2 ,... непрерывной дроби, являющихся приближениями x .

Поясним сказанное на примере. Предположим, что , тогда

Первые 6 подходящих дробей равны 1/1, 3/2, 7/5, 17/12, 41/29, 99/70. Записанные в виде десятичных дробей они дают следующие приближенные значения : 1,000; 1,500; 1,400; 1,417; 1,4137; 1,41428. Непрерывная дробь для имеет неполные частные 1, 1/1, 1/2, 1/1, 1/2, 1/1,.... Иррациональное число является корнем квадратного уравнения с целочисленными коэффициентами в том и только в том случае, если неполные частные его разложения в непрерывную дробь периодичны.

Непрерывные дроби тесно связны со многими разделами математики, например с теорией функций, расходящимися рядами, проблемой моментов, дифференциальными уравнениями и бесконечными матрицами. Если x – радианная мера острого угла, то тангенс угла x x /1, - x 2 /3, - x 2 /7, - x 2 /9, ..., а если x – положительное число, то натуральный логарифм от 1 + x равен значению непрерывной дроби с неполными частными 0, x /1, 1 2 x /2, 1 2 x /3, 2 2 x /4, 2 2 x /5, 3 2 x /6,... . Формальным решением дифференциального уравнения x 2 dy /dx + y = 1 + x в виде степенного ряда является расходящийся степенной ряд 1 + x – 1!x 2 + 2!x 3 – 3!x 4 +.... Этот степенной ряд можно преобразовать в непрерывную дробь с неполными частными 1, x /1, x /1, 2x /1, 2x /1, 3x /1, 3x /1,..., а ее в свою очередь использовать для получения решения дифференциального уравнения x 2 dy /dx + y = 1 + x .

НЕПРЕРЫВНЫЕ ДРОБИ. Последовательность, каждый член которой является обычной дробью, порождает непрерывную (или цепную) дробь, если ее второй член прибавить к первому, а каждую дробь, начиная с третьей, прибавить к знаменателю предыдущей дроби.

Например, последовательность 1, 1/2, 2/3, 3/4,..., n /(n + 1),... порождает непрерывную дробь

где многоточие в конце указывает на то, что процесс продолжается бесконечно. В свою очередь непрерывная дробь порождает другую последовательность дробей, называемых подходящими. В нашем примере первая, вторая, третья и четвертая подходящие дроби равны

Их можно построить по простому правилу из последовательности неполных частных 1, 1/2, 2/3, 3/4,.... Прежде всего выпишем первую и вторую подходящие дроби 1/1 и 3/2. Третья подходящая дробь равна (2Ч 1 + 3Ч 3)/(2Ч 1 + 3Ч 2) или 11/8, ее числитель равен сумме произведений числителей первой и второй подходящих дробей, умноженных соответственно на числитель и знаменатель третьего неполного частного, а знаменатель равен сумме произведений знаменателей первого и второго неполных частных, умноженных соответственно на числитель и знаменатель третьего неполного частного. Четвертая подходящая дробь получается аналогично из четвертого неполного частного 3/4 и второй и третьей подходящих дробей: (3Ч 3 + 4Ч 11)/(3Ч 2 + 4Ч 8) или 53/38. Следуя этому правилу, находим первые семь подходящих дробей: 1/1, 3/2, 11/8, 53/38, 309/222, 2119/1522 и 16687/11986. Запишем их в виде десятичных дробей (с шестью знаками после запятой): 1,000000; 1,500000; 1,375000; 1,397368; 1,391892; 1,392247 и 1,392208. Значением нашей непрерывной дроби будет число x , первые цифры которого 1,3922. Подходящие дроби являются лучшим приближением числа x . Причем они поочередно оказываются то меньше, то больше числа x (нечетные – больше x , а четные – меньше).

Чтобы представить отношение двух положительных целых чисел в виде конечной непрерывной дроби, нужно воспользоваться методом нахождения наибольшего общего делителя. Например, возьмем отношение 50/11. Так как 50 = 4Ч 11 + 6 или 11/50 = 1/(4 + 6/11), и, аналогично, 6/11 = 1/(1 + 5/6) или 5/6 = 1/(1 + 1/5), получаем:

Непрерывные дроби используются для приближения иррациональных чисел рациональными. Предположим, что x – иррациональное число (т.е. непредставимо в виде отношения двух целых чисел). Тогда, если n 0 – наибольшее целое число, которое меньше x , то x = n 0 + (x n 0), где x n 0 – положительное число меньше 1, поэтому обратное ему число x 1 больше 1 и x = n 0 + 1/x 1 . Если n 1 – наибольшее целое число, которое меньше x 1 , то x 1 = n 1 + (x 1 – n 1), где x 1 – n 1 – положительное число, которое меньше 1, поэтому обратное ему число x 2 больше 1, и x 1 = n 1 + 1/x 2 . Если n 2 – наибольшее целое число, которое меньше x 2 , то x 2 = n 2 + 1/x 3 , где x 3 больше 1, и т.д. В результате мы шаг за шагом находим последовательность неполных частных n 0 , 1/n 1 , 1/n 2 ,... непрерывной дроби, являющихся приближениями x .

Поясним сказанное на примере. Предположим, что , тогда

Первые 6 подходящих дробей равны 1/1, 3/2, 7/5, 17/12, 41/29, 99/70. Записанные в виде десятичных дробей они дают следующие приближенные значения : 1,000; 1,500; 1,400; 1,417; 1,4137; 1,41428. Непрерывная дробь для имеет неполные частные 1, 1/1, 1/2, 1/1, 1/2, 1/1,.... Иррациональное число является корнем квадратного уравнения с целочисленными коэффициентами в том и только в том случае, если неполные частные его разложения в непрерывную дробь периодичны.

Непрерывные дроби тесно связны со многими разделами математики, например с теорией функций, расходящимися рядами, проблемой моментов, дифференциальными уравнениями и бесконечными матрицами. Если x – радианная мера острого угла, то тангенс угла x x /1, - x 2 /3, - x 2 /7, - x 2 /9, ..., а если x – положительное число, то натуральный логарифм от 1 + x равен значению непрерывной дроби с неполными частными 0, x /1, 1 2 x /2, 1 2 x /3, 2 2 x /4, 2 2 x /5, 3 2 x /6,... . Формальным решением дифференциального уравнения x 2 dy /dx + y = 1 + x в виде степенного ряда является расходящийся степенной ряд 1 + x – 1!x 2 + 2!x 3 – 3!x 4 +.... Этот степенной ряд можно преобразовать в непрерывную дробь с неполными частными 1, x /1, x /1, 2x /1, 2x /1, 3x /1, 3x /1,..., а ее в свою очередь использовать для получения решения дифференциального уравнения x 2 dy /dx + y = 1 + x .

Часто для непрерывных дробей применяется более компактное обозначение x 1 y 1 + x 2 y 2 + x 3 y 3 + … .

Числа x 1 y 1 = x 1 y 1 , x 1 y 1 + x 2 y 2 = x 1 y 1 + x 2 y 2 , x 1 y 1 + x 2 y 2 + x 3 y 3 = x 1 y 1 + x 2 y 2 + x 3 y 3 , … называются подходящими дробями данной непрерывной дроби. Если последовательность подходящих дробей неограниченно приближается к некоторому числу, то говорят, что бесконечная непрерывная дробь сходится к этому числу. Точнее, неограниченное приближение числовой последовательности a 1 a 2 … к числу a означает, что, какое бы маленькое положительное число ε мы бы ни взяли, все элементы последовательности, начиная с некоторого номера, будут находиться от числа a на расстоянии меньшем, чем ε . Сходимость последовательности к числу принято обозначать так: lim s → ∞ a s = a .

Мы не станем углубляться в интереснейшую проблему исследования сходимости непрерывных дробей. Вместо этого поставим перед собой задачу алгоритмического вычисления последовательности подходящих дробей для данной непрерывной дроби. Глядя на эту последовательность, вычисленную на компьютере, можно строить гипотезы о сходимости непрерывной дроби.

Можно представлять себе подходящую дробь как функцию, определённую на пространстве последовательностей числовых пар: f ⁡ x 1 y 1 x 2 y 2 … x n y n = x 1 y 1 + x 2 y 2 + x 3 y 3 + … + x n y n . Было бы неплохо, чтобы эта функция оказалась индуктивной или нашлось бы её индуктивное расширение.

Другой пример: 1 1 + 1 1 + 1 1 + … Предположив, что эта дробь сходится к числу a , найдём это число. Для этого заметим, что a = 1 1 + a (проверьте!). У этого уравнения два решения, из которых годится положительное a = 5 − 1 2 . Между прочим, a = 1 φ = φ − 1 = 0,61803398874989… , где φ - число Фидия из главы 9. «Числа Фибоначчи » . Сама же непрерывная дробь имеет самое прямое отношение к числам Фибоначчи: они уютно расположились в числителях и знаменателях подходящих дробей 1 , 1 2 , 2 3 , 3 5 , 5 8 , 8 13 , … .

Следует заметить, что способ рассуждений, при помощи которого найдено правильное значение непрерывной дроби, содержит существенный изъян. Рассуждая точно так же, мы уже нашли в разделе «Способы приближённого вычисления числа π » «значение» бесконечной суммы 1 − 1 + 1 − 1 + 1 − … = 1 2 . Странно, что сумма целых чисел оказалась дробным числом. Формула для суммы бесконечной геометрической прогрессии со знаменателем − 1 ведёт к тому же результату: S = 1 1 − − 1 = 1 2 . Впрочем, не будем забывать, что формула суммы бесконечной геометрической прогрессии применяется лишь при знаменателях, строго меньших единицы по модулю.

Укажем и ещё более странный результат, опять подтверждаемый, если можно так выразиться, формулой суммы бесконечной геометрической прогрессии: S = 1 + 2 + 4 + 8 + 16 + … = 1 + 2 ⁢ 1 + 2 + 4 + 8 + … = 1 + 2 ⁢ S , откуда S = − 1 , то есть сумма положительных слагаемых оказалась отрицательной! Всё дело в том, что поиск суммы производился в предположении о её существовании. Для полноты картины следовало бы рассмотреть и другой случай, когда сумма не существует, но тогда мы не получим никакого результата.

Весьма важное в математике число, e = 2,718281828459045… , имеет много названий: основание натуральных логарифмов , число Непера , число Эйлера . Невозможно перечислить ситуации, где в математике возникает это число, которое, к тому же, служит вечным напоминанием о дне рождения Л. Н. Толстого . Обычно e определяют при помощи второго замечательного предела

Как и число π , число Непера имеет несколько красивых представлений через непрерывные дроби: e − 2 = 1 1 + 1 2 1 + 1 3 1 + 1 4 1 + … = 2 2 + 3 3 + 4 4 + 5 5 + … = 1 1 + 1 2 + 1 1 + 1 1 + 1 4 + 1 1 + 1 1 + 1 6 + 1 1 + 1 1 + 1 8 + 1 1 + 1 1 + 1 10 + …

Читателям, заинтересовавшимся непрерывными дробями, мы рекомендуем брошюру .

© 2024 Helperlife - Строительный портал